
FireHOL Reference

Copyright (c) 2004,2013-2015 Costa Tsaousis costa@firehol.org
Copyright (c) 2012-2015 Phil Whineray phil@firehol.org

Version 3.0.3_master (Built 28 Nov 2016)

Contents

1 FireHOL Reference 9

1.1 Who should read this manual . 9

1.2 Where to get help . 9

1.3 Installation . 9

1.4 Licence . 10

2 Setting up and running FireHOL 11

3 Primary commands 11

4 Sub-commands 11

5 Helper commands 12

6 Manual Pages in Alphabetical Order 14

6.1 firehol(1) . 14

6.1.1 NAME . 14

6.1.2 SYNOPSIS . 14

6.1.3 DESCRIPTION . 14

6.1.4 COMMANDS . 15

6.1.5 FILES . 16

6.1.6 SEE ALSO . 17

1

mailto:costa@firehol.org
mailto:phil@firehol.org

6.2 firehol.conf(5) . 18

6.2.1 NAME . 18

6.2.2 DESCRIPTION . 18

6.2.3 VARIABLES AVAILABLE 19

6.2.4 ADDING SERVICES . 20

6.2.5 DEFINITIONS . 22

6.2.6 SUBCOMMANDS . 22

6.2.7 HELPER COMMANDS 22

6.2.8 CONFIGURATION HELPER COMMANDS 23

6.2.9 SEE ALSO . 23

6.3 firehol-action(5) . 24

6.3.1 NAME . 24

6.3.2 SYNOPSIS . 24

6.3.3 DESCRIPTION . 24

6.3.4 SEE ALSO . 29

6.4 firehol-actions(5) . 30

6.4.1 NAME . 30

6.4.2 SYNOPSIS . 30

6.4.3 DESCRIPTION . 30

6.4.4 REJECT WITH MESSAGES 36

6.4.5 SEE ALSO . 37

6.5 firehol-blacklist(5) . 39

6.5.1 NAME . 39

6.5.2 SYNOPSIS . 39

6.5.3 DESCRIPTION . 39

6.5.4 EXAMPLES . 40

6.5.5 SEE ALSO . 40

6.6 firehol-classify(5) . 41

6.6.1 NAME . 41

6.6.2 SYNOPSIS . 41

6.6.3 DESCRIPTION . 41

2

6.6.4 EXAMPLES . 41

6.6.5 SEE ALSO . 41

6.7 firehol-client(5) . 43

6.7.1 NAME . 43

6.7.2 SYNOPSIS . 43

6.7.3 DESCRIPTION . 43

6.7.4 EXAMPLES . 44

6.7.5 SEE ALSO . 44

6.8 firehol-connmark(5) . 45

6.8.1 NAME . 45

6.8.2 SYNOPSIS . 45

6.8.3 DESCRIPTION . 45

6.8.4 EXAMPLES . 46

6.8.5 SEE ALSO . 46

6.9 firehol-defaults.conf(5) . 47

6.9.1 NAME . 47

6.9.2 SYNOPSIS . 47

6.9.3 DESCRIPTION . 48

6.9.4 VARIABLES . 48

6.9.5 SEE ALSO . 54

6.10 firehol-dscp(5) . 55

6.10.1 NAME . 55

6.10.2 SYNOPSIS . 55

6.10.3 DESCRIPTION . 55

6.10.4 EXAMPLES . 55

6.10.5 SEE ALSO . 56

6.11 firehol-group(5) . 57

6.11.1 NAME . 57

6.11.2 SYNOPSIS . 57

6.11.3 DESCRIPTION . 57

6.11.4 EXAMPLES . 57

3

6.11.5 SEE ALSO . 58

6.12 firehol-interface(5) . 59

6.12.1 NAME . 59

6.12.2 SYNOPSIS . 59

6.12.3 DESCRIPTION . 59

6.12.4 PARAMETERS . 60

6.12.5 SEE ALSO . 60

6.13 firehol-ipset(5) . 62

6.13.1 NAME . 62

6.13.2 SYNOPSIS . 62

6.13.3 DESCRIPTION . 62

6.13.4 FireHOL ipset extensions 62

6.13.5 EXAMPLES . 63

6.13.6 SEE ALSO . 63

6.14 firehol-iptables(5) . 65

6.14.1 NAME . 65

6.14.2 SYNOPSIS . 65

6.14.3 DESCRIPTION . 65

6.14.4 SEE ALSO . 65

6.15 firehol-iptrap(5) . 67

6.15.1 NAME . 67

6.15.2 SYNOPSIS . 67

6.15.3 DESCRIPTION . 67

6.15.4 EXAMPLES . 68

6.15.5 SEE ALSO . 69

6.16 firehol-mac(5) . 70

6.16.1 NAME . 70

6.16.2 SYNOPSIS . 70

6.16.3 DESCRIPTION . 70

6.16.4 EXAMPLES . 70

6.16.5 SEE ALSO . 71

4

6.17 firehol-mark(5) . 72

6.17.1 NAME . 72

6.17.2 SYNOPSIS . 72

6.17.3 DESCRIPTION . 72

6.17.4 EXAMPLES . 73

6.17.5 SEE ALSO . 73

6.18 firehol-masquerade(5) . 74

6.18.1 NAME . 74

6.18.2 SYNOPSIS . 74

6.18.3 DESCRIPTION . 74

6.18.4 MASQUERADING AND SNAT 75

6.18.5 EXAMPLES . 75

6.18.6 SEE ALSO . 75

6.19 firehol-modifiers(5) . 76

6.19.1 NAME . 76

6.19.2 SYNOPSIS . 76

6.19.3 DESCRIPTION . 76

6.19.4 SEE ALSO . 77

6.20 firehol-nat(5) . 78

6.20.1 NAME . 78

6.20.2 SYNOPSIS . 78

6.20.3 DESCRIPTION . 78

6.20.4 BALANCING . 80

6.20.5 EXAMPLES . 83

6.20.6 SEE ALSO . 84

6.21 firehol-params(5) . 85

6.21.1 NAME . 85

6.21.2 SYNOPSIS . 85

6.21.3 DESCRIPTION . 86

6.21.4 COMMON . 87

6.21.5 ROUTER ONLY . 89

5

6.21.6 INTERFACE ONLY . 90

6.21.7 LOGGING . 91

6.21.8 HELPERS ONLY PARAMETERS 91

6.21.9 SEE ALSO . 94

6.22 firehol-policy(5) . 95

6.22.1 NAME . 95

6.22.2 SYNOPSIS . 95

6.22.3 DESCRIPTION . 95

6.22.4 EXAMPLE . 95

6.22.5 SEE ALSO . 96

6.23 firehol-protection(5) . 97

6.23.1 NAME . 97

6.23.2 SYNOPSIS . 97

6.23.3 DESCRIPTION . 97

6.23.4 PACKET PROTECTION TYPES 98

6.23.5 FLOOD PROTECTION TYPES 98

6.23.6 CLIENT LIMITING TYPES 99

6.23.7 KNOWN ISSUES . 100

6.23.8 SEE ALSO . 100

6.24 firehol-proxy(5) . 101

6.24.1 NAME . 101

6.24.2 SYNOPSIS . 101

6.24.3 DESCRIPTION . 101

6.24.4 EXAMPLES . 102

6.24.5 SEE ALSO . 102

6.25 firehol-router(5) . 103

6.25.1 NAME . 103

6.25.2 SYNOPSIS . 103

6.25.3 DESCRIPTION . 103

6.25.4 PARAMETERS . 104

6.25.5 WORKING WITH ROUTERS 104

6

6.25.6 SEE ALSO . 105

6.26 firehol-server(5) . 106

6.26.1 NAME . 106

6.26.2 SYNOPSIS . 106

6.26.3 DESCRIPTION . 106

6.26.4 EXAMPLES . 107

6.26.5 SEE ALSO . 107

6.27 firehol-services(5) . 108

6.27.1 NAME . 108

6.27.2 SYNOPSIS . 108

6.27.3 DESCRIPTION . 109

6.28 firehol-synproxy(5) . 180

6.28.1 NAME . 180

6.28.2 SYNOPSIS . 180

6.28.3 DESCRIPTION . 180

6.28.4 BACKGROUND . 181

6.28.5 HOW IT WORKS . 181

6.28.6 USE CASES . 182

6.28.7 DESIGN . 183

6.28.8 LIMITATIONS . 184

6.28.9 OTHER OPTIONS . 185

6.28.10SYNPROXY AND DYNAMIC IP 185

6.28.11EXAMPLES . 186

6.28.12SEE ALSO . 187

6.29 firehol-tcpmss(5) . 189

6.29.1 NAME . 189

6.29.2 SYNOPSIS . 189

6.29.3 DESCRIPTION . 189

6.29.4 EXAMPLES . 189

6.29.5 SEE ALSO . 190

6.30 firehol-tos(5) . 191

7

6.30.1 NAME . 191

6.30.2 SYNOPSIS . 191

6.30.3 DESCRIPTION . 191

6.30.4 EXAMPLES . 191

6.30.5 SEE ALSO . 192

6.31 firehol-tosfix(5) . 193

6.31.1 NAME . 193

6.31.2 SYNOPSIS . 193

6.31.3 DESCRIPTION . 193

6.31.4 EXAMPLE . 193

6.31.5 SEE ALSO . 193

6.32 firehol-version(5) . 195

6.32.1 NAME . 195

6.32.2 SYNOPSIS . 195

6.32.3 DESCRIPTION . 195

6.32.4 SEE ALSO . 195

8

The latest version of this manual is available online as a PDF, as single page
HTML and also as multiple pages within the website.

1 FireHOL Reference

1.1 Who should read this manual

This is a reference guide with specific detailed information on commands and
configuration syntax for the FireHOL tool. The reference is unlikely to be suitable
for newcomers to the tools, except as a means to look up more information on a
particular command.

For tutorials and guides to using FireHOL and FireQOS, please visit the website.

1.2 Where to get help

The FireHOL website.

The mailing lists and archives.

The package comes with a complete set of manpages, a README and a brief
INSTALL guide.

1.3 Installation

You can download tar-file releases by visiting the FireHOL website download
area.

Unpack and change directory with:

tar xfz firehol-version.tar.gz
cd firehol-version

Options for the configure program can be seen in the INSTALL file and by
running:

./configure --help

To build and install taking the default options:

./configure && make && sudo make install

9

http://firehol.org/firehol-manual.pdf
http://firehol.org/firehol-manual.html
http://firehol.org/firehol-manual.html
http://firehol.org/firehol-manual/
http://firehol.org/
http://firehol.org/
http://lists.firehol.org/mailman/listinfo
http://firehol.org/download/
http://firehol.org/download/

Alternatively, just copy the sbin/firehol.in file to where you want it. All of
the common SysVInit command line arguments are recognised which makes it
easy to deploy the script as a startup service.

Packages are available for most distributions and you can use your distribution’s
standard commands (e.g. aptitude, yum, etc.) to install these.

Note
Distributions do not always offer the latest version. You can see what
the latest release is on the FireHOL website.

1.4 Licence

This manual is licensed under the same terms as the FireHOL package, the GNU
GPL v2 or later.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

10

http://firehol.org/

2 Setting up and running FireHOL

FireHOL is started and stopped using the firehol script. The default firewall
configuration is to be found in /etc/firehol/firehol.conf, with some behaviours
governed by variables in /etc/firehol/firehol-defaults.conf.

3 Primary commands

These are the primary packet filtering building blocks. Below each of these,
sub-commands can be added.

command 4/6/46
forbidden
params description

interface Y inface
outface
physout

Define packet filtering blocks,
protecting the firewall host itself.

router Y - Define packet filtering blocks,
protecting other hosts from routed
traffic.

4 Sub-commands

A rule in an interface or router definition typically consists of a subcommand
to apply to a service using one of the standard actions provided it matches
certain optional rule parameters. e.g.

server ssh accept src 10.0.0.0/8

The following sub-commands can be used below primary commands to form
rules.

command 4/6/46
forbidden
params description

client Y sport
dport

Allow access to a client running on
the interface or the protected
router hosts.

group Y - Define groups of commands that share
optional rule parameters. Groups can
be nested.

11

command 4/6/46
forbidden
params description

iptables
ip6tables

N all
forbidden

A wrapper for the system iptables
command, to add custom iptables
statements to a FireHOL firewall.

masquerade Y inface
outface

Change the source IP of packets
leaving outface, with the IP of the
interface they are using to leave.

policy N all
forbidden

Define the action to be applied on
packets not matched by any server
or client statements in the
interface or router.

protection N all
forbidden

Examine incoming packets per
interface or router and filter out
bad packets or limit request frequency.

server Y sport
dport

Allow access to a server running on
the interface or the protected
router hosts.

tcpmss Y all
forbidden

Set the MSS (Maximum Segment
Size) of TCP SYN packets routed
through the firewall.

5 Helper commands

The following commands are generally used to set things up before the first
primary command. Some can be used below an interface or router and
also appear in the subcommands table.

command 4/6/46
forbidden
params description

action Y - Define new actions that can
differentiate the final action based on
rules. action can be used to define
traps.

blacklist Y - Drop matching packets globally.
classify Y - Put matching traffic into the specified

traffic shaping class.
connmark Y - Set a stateful mark from the

connmark group.

12

command 4/6/46
forbidden
params description

cthelper 4/6 - Control connection tracking helpers.
dscp Y - Set the DSCP field of packets.
ipset 4/6 all

forbidden
Define ipsets. A wrapper for the
system ipset command to add ipsets
to a FireHOL firewall.

iptables
ip6tables

N all
forbidden

A wrapper for the system iptables
command, to add custom iptables
statements to a FireHOL firewall.

iptrap 4/6 - Dynamically put IP addresses in an
ipset.

mac Y all
forbidden

Restricts an IP to a particular MAC
address.

mark Y - Set a stateful mark from the
usermark group.

masquerade Y - Change the source IP of packets
leaving outface, with the IP of the
interface they are using to leave.

dnat Y - Change the destination IP or port of
packets received, to fixed values or
fixed ranges. dnat can be used to
implement load balancers.

snat Y - Change the source IP or port of
packets leaving, to fixed values or
fixed ranges.

redirect Y - Redirect packets to the firewall host,
possibly changing the destination port.
Can support load balancers if multiple
daemons run on localhost.

transparent_proxy Y see notes Set up a transparent TCP, HTTP or
squid proxy.

synproxy Y - Configure synproxy.
tcpmss Y all

forbidden
Set the MSS (Maximum Segment
Size) of TCP SYN packets routed
through the firewall.

tos Y - Set the Type of Service (TOS) of
packets.

tosfix Y all
forbidden

Apply suggested TOS values to
packets.

13

command 4/6/46
forbidden
params description

version N all
forbidden

Specify a version number for the
configuration file.

6 Manual Pages in Alphabetical Order

6.1 firehol(1)

6.1.1 NAME

firehol - an easy to use but powerful iptables stateful firewall

6.1.2 SYNOPSIS

firehol

sudo -E firehol panic [IP]

firehol command [– conf-arg. . .]

firehol CONFIGFILE [start|debug|try] [– conf-arg. . .]

6.1.3 DESCRIPTION

Running firehol invokes iptables(8) to manipulate your firewall.

Run without any arguments, firehol will present some help on usage.

When given CONFIGFILE, firehol will use the named file instead of
/etc/firehol/firehol.conf as its configuration. If no command is given,
firehol assumes try.

It is possible to pass arguments for use by the configuration file separating any
conf-arg values from the rest of the arguments with --. The arguments are
accessible in the configuration using standard bash(1) syntax e.g. $1, $2, etc.

14

6.1.3.1 PANIC

To block all communication, invoke firehol with the panic command.

FireHOL removes all rules from the running firewall and then DROPs all traffic on
all iptables(8) tables (mangle, nat, filter) and pre-defined chains (PREROUTING,
INPUT, FORWARD, OUTPUT, POSTROUTING).

DROPing is not done by changing the default policy to DROP, but by adding
one rule per table/chain to drop all traffic. This allows systems which do not
reset all the chains to ACCEPT when starting to function correctly.

When activating panic mode, FireHOL checks for the existence of the
SSH_CLIENT shell environment variable, which is set by ssh(1). If it finds
this, then panic mode will allow the established SSH connection specified in this
variable to operate.

Note
In order for FireHOL to see the environment variable you must ensure
that it is preserved. For sudo(8) use the -E and for su(1) omit the -
(minus sign).

If SSH_CLIENT is not set, the IP after the panic argument allows you to give
an IP address for which all established connections between the IP address and
the host in panic will be allowed to continue.

6.1.4 COMMANDS

start; restart Activates the firewall using /etc/firehol/firehol.conf.
Use of the term restart is allowed for compatibility with common init
implementations.

try Activates the firewall, waiting for the user to type the word commit. If this
word is not typed within 30 seconds, the previous firewall is restored.

stop Stops a running iptables(8) firewall by clearing all of the tables and chains
and setting the default policies to ACCEPT. This will allow all traffic to
pass unchecked.

condrestart Restarts the FireHOL firewall only if it is already active. This
is the generally expected behaviour (but opposite to FireHOL prior to
2.0.0-pre4).

status Shows the running firewall, using /sbin/iptables -nxvL | less.

15

save Start the firewall and then save it using iptables-save(8) to the location
given by FIREHOL_AUTOSAVE. See firehol-defaults.conf(5) for more
information.
The required kernel modules are saved to an executable shell script
/var/spool/firehol/last_save_modules.sh, which can be called dur-
ing boot if a firewall is to be restored.

Note
External changes may cause a firewall restored after a reboot to
not work as intended where starting the firewall with FireHOL
will work.
This is because as part of starting a firewall, FireHOL checks
some changeable values. For instance the current kernel configu-
ration is checked (for client port ranges), and RPC servers are
queried (to allow correct functioning of the NFS service).

debug Parses the configuration file but instead of activating it, FireHOL shows
the generated iptables(8) statements.

explain Enters an interactive mode where FireHOL accepts normal configura-
tion commands and presents the generated iptables(8) commands for each
of them, together with some reasoning for its purpose.
Additionally, FireHOL automatically generates a configuration script based
on the successful commands given.
Some extra commands are available in explain mode.

help Present some help
show Present the generated configuration
quit Exit interactive mode and quit

helpme; wizard Tries to guess the FireHOL configuration needed for the
current machine.
FireHOL will not stop or alter the running firewall. The configuration
file is given in the standard output of firehol, thus firehol helpme >
/tmp/firehol.conf will produce the output in /tmp/firehol.conf.
The generated FireHOL configuration must be edited before use on your
systems. You are required to take a number of decisions; the comments in
the generated file will instruct you in the choices you must make.

6.1.5 FILES

/etc/firehol/firehol.conf

16

6.1.6 SEE ALSO

• firehol.conf(5) - FireHOL configuration
• firehol-defaults.conf(5) - control variables
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

17

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.2 firehol.conf(5)

6.2.1 NAME

firehol.conf - FireHOL configuration

6.2.2 DESCRIPTION

/etc/firehol/firehol.conf is the default configuration file for firehol(1). It
defines the stateful firewall that will be produced.

A configuration file starts with an optional version indicator which looks like
this:

version 6

See firehol-version(1) for full details.

A configuration file contains one or more interface definitions, which look like
this:

interface eth0 lan
client all accept # This host can access any remote service
server ssh accept # Remote hosts can access SSH on local server
...

The above definition has name “lan” and specifies a network interface (eth0). A
definition may contain zero or more subcommands. See firehol-interface(5) for
full details.

By default FireHOL will try to create both IPv4 and IPv6 rules for each interface.
To make this explicit or restrict which rules are created write both interface,
ipv4 interface or ipv6 interface.

Note that IPv6 will be disabled silently if your system is not configured to use
it. You can test this by looking for the file /proc/net/if_inet6. The IPv6
HOWTO has more information.

A configuration file contains zero or more router definitions, which look like
this:

DMZ_IF=eth0
WAN_IF=eth1

18

http://www.tldp.org/HOWTO/Linux+IPv6-HOWTO/systemcheck-kernel.html
http://www.tldp.org/HOWTO/Linux+IPv6-HOWTO/systemcheck-kernel.html

router wan2dmz inface ${WAN_IF} outface ${DMZ_IF}
route http accept # Hosts on WAN may access HTTP on hosts in DMZ
server ssh accept # Hosts on WAN may access SSH on hosts in DMZ
client pop3 accept # Hosts in DMZ may access POP3 on hosts on WAN
...

The above definition has name “wan2dmz” and specifies incoming and outgoing
network interfaces (eth1 and eth0) using variables. A definition may contain zero
or more subcommands. Note that a router is not required to specify network
interfaces to operate on. See firehol-router(5) for full details.

By default FireHOL will try to create both IPv4 and IPv6 rules for each router.
To make this explicit or restrict which rules are created write both router,
ipv4 router or ipv6 router.

It is simple to add extra service definitions which can then be used in the same
way as those provided as standard. See ADDING SERVICES.

The configuration file is parsed as a bash(1) script, allowing you to set up and
use variables, flow control and external commands.

Special control variables may be set up and used outside of any definition, see
firehol-defaults.conf(5) as can the functions in CONFIGURATION HELPER
COMMANDS and HELPER COMMANDS.

6.2.3 VARIABLES AVAILABLE

The following variables are made available in the FireHOL configuration file and
can be accessed as ${VARIABLE}.

UNROUTABLE_IPS This variable includes the IPs from both PRI-
VATE_IPS and RESERVED_IPS. It is useful to restrict traffic on
interfaces and routers accepting Internet traffic, for example:

interface eth0 internet src not "${UNROUTABLE_IPS}"

PRIVATE_IPS This variable includes all the IP addresses defined as Private
or Test by RFC 3330.
You can override the default values by creating a file called
/etc/firehol/PRIVATE_IPS.

RESERVED_IPS This variable includes all the IP addresses defined by IANA
as reserved.
You can override the default values by creating a file called
/etc/firehol/RESERVED_IPS.

19

https://tools.ietf.org/html/rfc3330
http://www.iana.org/

Now that IPv4 address space has all been allocated there is very little
reason that this value will need to change in future.

MULTICAST_IPS This variable includes all the IP addresses defined as
Multicast by RFC 3330.
You can override the default values by creating a file called
/etc/firehol/MULTICAST_IPS.

6.2.4 ADDING SERVICES

To define new services you add the appropriate lines before using them later in
the configuration file.

The following are required:

server_myservice_ports=“proto/sports”

client_myservice_ports=“cports”

proto is anything iptables(8) accepts e.g. “tcp”, “udp”, “icmp”, including numeric
protocol values.

sports is the ports the server is listening at. It is a space-separated list of port
numbers, names and ranges (from:to). The keyword any will match any server
port.

cports is the ports the client may use to initiate a connection. It is a
space-separated list of port numbers, names and ranges (from:to). The
keyword any will match any client port. The keyword default will match
default client ports. For the local machine (e.g. a client within an
interface) it resolves to sysctl(8) variable net.ipv4.ip_local_port_range (or
/proc/sys/net/ipv4/ip_local_port_range). For a remote machine (e.g. a
client within an interface or anything in a router) it resolves to the variable
DEFAULT_CLIENT_PORTS (see firehol-defaults.conf(5)).

The following are optional:

require_myservice_modules=“modules”

require_myservice_nat_modules=“nat-modules”

The named kernel modules will be loaded when the definition is used. The
NAT modules will only be loaded if FIREHOL_NAT is non-zero (see firehol-
defaults.conf(5)).

20

https://tools.ietf.org/html/rfc3330

For example, for a service named daftnet that listens at two ports, port 1234
TCP and 1234 UDP where the expected client ports are the default random
ports a system may choose, plus the same port numbers the server listens at,
with further dynamic ports requiring kernel modules to be loaded:

Setup service
server_daftnet_ports="tcp/1234 udp/1234"
client_daftnet_ports="default 1234"
require_daftnet_modules="ip_conntrack_daftnet"
require_daftnet_nat_modules="ip_nat_daftnet

interface eth0 lan0
server daftnet accept

interface eth1 lan1
client daftnet reject

router lan2lan inface eth0 outface eth1
route daftnet accept

Where multiple ports are provides (as per the example), FireHOL simply deter-
mines all of the combinations of client and server ports and generates multiple
iptables(8) statements to match them.

To create more complex rules, or stateless rules, you will need to create a bash
function prefixed rules_ e.g. rules_myservice. The best reference is the many
such functions in the main firehol(1) script.

When adding a service which uses modules, or via a custom function, you may
also wish to include the following:

ALL_SHOULD_ALSO_RUN=“${ALL_SHOULD_ALSO_RUN}
myservice”

which will ensure your service is set-up correctly as part of the all service.

Note
To allow definitions to be shared you can instead create files and
install them in the /etc/firehol/services directory with a .conf
extension.
The first line must read:

#FHVER: 1:213

21

1 is the service definition API version. It will be changed if the API
is ever modified. The 213 originally referred to a FireHOL 1.x minor
version but is no longer checked.
FireHOL will refuse to run if the API version does not match the
expected one.

6.2.5 DEFINITIONS

• firehol-interface(5) - interface definition
• firehol-router(5) - router definition

6.2.6 SUBCOMMANDS

• firehol-policy(5) - policy command
• firehol-protection(5) - protection command
• firehol-server(5) - server, route commands
• firehol-client(5) - client command
• firehol-group(5) - group command

6.2.7 HELPER COMMANDS

These helpers can be used in interface and router definitions as well as before
them:

• firehol-iptables(5) - iptables helper
• firehol-masquerade(5) - masquerade helper

This helper can be used in router definitions as well as before any router or
interface:

• firehol-tcpmss(5) - tcpmss helper

22

6.2.8 CONFIGURATION HELPER COMMANDS

These helpers should only be used outside of interface and router definitions
(i.e. before the first interface is defined).

• firehol-version(5) - version config helper
• firehol-action(5) - action config helper
• firehol-blacklist(5) - blacklist config helper
• firehol-classify(5) - classify config helper
• firehol-connmark(5) - connmark config helper
• firehol-dscp(5) - dscp config helper
• firehol-mac(5) - mac config helper
• firehol-mark(5) - mark config helper
• firehol-nat(5) - nat, snat, dnat, redirect helpers
• firehol-proxy(5) - transparent proxy/squid helpers
• firehol-tos(5) - tos config helper
• firehol-tosfix(5) - tosfix config helper

6.2.9 SEE ALSO

• firehol(1) - FireHOL program
• firehol-defaults.conf(5) - control variables
• firehol-services(5) - services list
• firehol-actions(5) - actions for rules
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

23

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.3 firehol-action(5)

6.3.1 NAME

firehol-action - set up custom filtering actions

6.3.2 SYNOPSIS

action name [table table_name] type type_params [next [type type_params [
next . . .]]]

6.3.3 DESCRIPTION

The action helper creates custom actions that can be used everywhere in
FireHOL, like this:

action ACT1 chain accept

interface any world
server smtp ACT1

router myrouter
policy ACT1

The action helper allows linking multiple actions together and having some
logic to select which action to execute, like this:

action ACT1 \
rule src 192.168.0.0/16 action reject \

next rule dst 192.168.0.0/16 action reject \
next rule inface eth2 action drop \
next rule outface eth2 action drop \
next action accept

interface any world
server smtp ACT1

router myrouter
policy ACT1

24

There is no limit on the number of actions that can be linked together.

type can be chain or action (chain and action are aliases), rule, iptrap,
ipuntrap or sockets_suspects_trap.

6.3.3.1 Chain type actions

This is the simpler action. It creates an iptables(8) chain which can be used to
control the action of other firewall rules once the firewall is running.

For example, you can setup the custom action ACT1, which by default is
ACCEPT, but can be dynamically changed to DROP, REJECT or RETURN
(and back) without restarting the firewall.

The name can be any chain name accepted by iptables. You should try to keep
it within 5 and 10 characters.

Note
The names created with this command are case-sensitive.

The action can be any of those supported by FireHOL (see firehol-actions(5)).
Only ACCEPT, REJECT, DROP, RETURN have any meaning in this instance.

Once the firewall is running you can dynamically modify the behaviour of the
chain from the Linux command-line, as detailed below:

action ACT1 chain accept

interface any world
server smtp ACT1
client smtp ACT1

To insert a DROP action at the start of the chain to override the default action
(ACCEPT):

iptables -t filter -I ACT1 -j DROP

To delete the DROP action from the start of the chain to return to the default
action:

iptables -t filter -D ACT1 -j DROP

Note
If you delete all of the rules in the chain, the default will be to
RETURN, in which case the behaviour will be as if any rules with
the action were not present in the configuration file.

25

6.3.3.2 Rule type actions

rule type actions define a few conditions that will lead to an action.

All optional rule parameters FireHOL supports can be used here (see firehol-
params(5)).

action ACT1 \
rule inface eth0 action accept
next rule outface eth0 action accept
next action reject

interface any world
server smtp ACT1

In the above example the smtp server can only be accessed from eth0.

It is important to remember that actions will be applied for all the traffic, both
requests and replies. The type of traffic can be filtered with the state optional
rule parameter, like this:

action ACT1 \
rule inface eth0 state NEW action reject
next action accept

interface any world
server smtp ACT1
client smtp ACT1

In the above example, the smtp server will not accept NEW connections from eth0,
but the smtp client will be able to connect to servers on eth0 (and everywhere
else).

6.3.3.3 iptrap type actions

iptrap (see firehol-iptrap(5)) is a helper than copies (traps) an IP to an ipset
(see firehol-ipset(5)). It does not perform any action on the traffic.

Using the iptrap action, the iptrap helper can be linked to filtering actions,
like this:

a simple version of TRAP_AND_REJECT
this uses just 2 ipsets, one for counting packets (policytrap)
and one to store the banned IPs (trap).
it also needs a ipset called whitelist, for excluded source IPs.
it will ban IPs when they have 50+ reject packets

26

action4 TRAP_AND_REJECT \
rule iptrap src policytrap 30 inface "${wan}" \

src not "${UNROUTABLE_IPS} ipset:whitelist" \
state NEW log "POLICY TRAP" \

next iptrap trap src 86400 \
state NEW log "POLICY TRAP - BANNED" \
ipset policytrap src no-counters packets-above 50 \

next action reject

a complete TRAP_AND_REJECT
this uses 3 ipset, one for keeping track of the rejected sockets
per source IP (called 'sockets'), one for counting the sockets
per source IP (called 'suspects') and one to store the banned IPs
(called 'trap').
it also needs a ipset called whitelist, for excluded source IPs.
it will ban IPs when they have 3 or more rejected sockets
action4 TRAP_AND_REJECT \

iptrap sockets src,dst,dst 3600 method hash:ip,port,ip counters \
state NEW log "TRAP AND REJECT - NEW SOCKET" \
inface "${wan}" \
src not "${UNROUTABLE_IPS} ipset:whitelist" \

next iptrap suspects src 3600 counters \
state NEW log "TRAP AND REJECT - NEW SUSPECT" \
ipset sockets src,dst,dst no-counters packets 1 \

next iptrap trap src 86400 \
state NEW log "TRAP AND REJECT - BANNED" \
ipset suspects src no-counters packets-above 2 \

next action REJECT

interface any world
policy TRAP_AND_REJECT
protection bad-packets
...

router wan2lan inface "${wan}" outface "${lan}"
policy TRAP_AND_REJECT
protection bad-packets
...

Since we used the action TRAP_AND_REJECT as an interface policy, it will
get all the traffic not accepted, rejected, or dropped by the server and client
statements.

For all these packets, the action TRAP_AND_REJECT will first check that
they are coming in from wan0, that their src IP is not in UNROUTABLE_IPS list
and in the whitelist ipset, that they are NEW connections, and if all these

27

conditions are met, it will log with the tag POLICY TRAP and add the src IP of
the packets in the policytrap ipset for 30 seconds.

All traffic not matched by the above, will be just rejected.

6.3.3.4 sockets_suspects_trap type actions

The type sockets_suspects_trap will automatically a custom trap using the
following template:

action4 *name* sockets_suspects_trap *SUSPECTS_TIMEOUT* *TRAP_TIMEOUT* *VALID_CONNECTIONS* [*optional params*] next ...

This will:

1. Create the ipset ${name}_sockets where the matched sockets will be
stored for SUSPECTS_TIMEOUT seconds.

2. Create the ipset ${name}_suspects where the source IPs of the matched
sockets will be stored for SUSPECTS_TIMEOUT seconds.

3. Create the ipset ${name}_trap where the trapped IPs will be stored for
TRAP_TIMEOUT seconds. IPs will be added to this ipset only if more than
VALID_CONNECTIONS have been matched by this IP.

optional params are FireHOL optional rule parameters (firehol-params(5))
that can be used to limit the match for the first ipset (sockets).

So, to design the same TRAP_AND_REJECT as above, this statement is
needed:

action4 TRAP_AND_REJECT \
sockets_suspects_trap 3600 86400 2 \

inface "${wan}" \
src not "${UNROUTABLE_IPS} ipset:whitelist" \

next action REJECT

The ipsets that will be created will be named: TRAP_AND_REJECT_sockets,
TRAP_AND_REJECT_suspects and TRAP_AND_REJECT_trap.

Note Always terminate sockets_suspects_trap with a next
action DROP or next action REJECT, or the traffic will continue
to flow.

28

6.3.4 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-actions(5) - optional rule parameters
• iptables(8) - administration tool for IPv4 firewalls
• ip6tables(8) - administration tool for IPv6 firewalls
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

29

http://ipset.netfilter.org/iptables.man.html
http://ipset.netfilter.org/ip6tables.man.html
http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.4 firehol-actions(5)

6.4.1 NAME

firehol-actions - actions for rules

6.4.2 SYNOPSIS

accept

accept with hashlimit name upto|above amount/period [burst amount] [mode
{srcip|srcport|dstip|dstport},. . .] [srcmask prefix] [dstmask prefix] [htable-size
buckets] [htable-max entries] [htable-expire msec] [htable-gcinterval msec]

accept with connlimit upto|above limit [mask mask] [saddr|daddr]

accept with limit requests/period burst [overflow action]

accept with recent name seconds hits

accept with knock name

reject [with message]

drop | deny

return

tarpit

6.4.3 DESCRIPTION

These actions are the actions to be taken on traffic that has been matched by a
particular rule.

FireHOL will also pass through any actions that iptables(8) accepts, however
these definitions provide lowercase versions which accept arguments where ap-
propriate and which could otherwise not be passed through.

Note
The iptables(8) LOG action is best used through the optional rule
parameter log since the latter can be combined with one of these
actions (FireHOL will generate multiple firewall rules to make this
happen). For more information see log and loglimit.

The following actions are defined:

30

6.4.3.1 accept

accept allows the traffic matching the rules to reach its destination.

For example, to allow SMTP requests and their replies to flow:

server smtp accept

6.4.3.2 accept with hashlimit name upto|above amount/period
[burst amount] [mode {srcip|srcport|dstip|dstport},. . .] [srcmask
prefix] [dstmask prefix] [htable-size buckets] [htable-max entries]
[htable-expire msec] [htable-gcinterval msec]

hashlimit hashlimit uses hash buckets to express a rate limiting match (like the
limit match) for a group of connections using a single iptables rule. Grouping
can be done per-hostgroup (source and/or destination address) and/or per-port.

name The name for the /proc/net/ipt_hashlimit/name entry.

upto amount[/second|/minute|/hour|/day] Match if the rate is below or equal
to amount/quantum. It is specified either as a number, with an optional time
quantum suffix (the default is 3/hour).

above amount[/second|/minute|/hour|/day] Match if the rate is above
amount/quantum.

burst amount Maximum initial number of packets to match: this number gets
recharged by one every time the limit specified above is not reached, up to this
number; the default is 5. This option should be used with caution - if the entry
expires, the burst value is reset too.

mode {srcip|srcport|dstip|dstport},. . . A comma-separated list of objects to take
into consideration. If no mode option is given, srcip,dstport is assumed.

srcmask prefix When –hashlimit-mode srcip is used, all source addresses encoun-
tered will be grouped according to the given prefix length and the so-created
subnet will be subject to hashlimit. prefix must be between (inclusive) 0 and 32.
Note that srcmask 0 is basically doing the same thing as not specifying srcip
for mode, but is technically more expensive.

dstmask prefix Like srcmask, but for destination addresses.

htable-size buckets The number of buckets of the hash table

htable-max entries Maximum entries in the hash.

htable-expire msec After how many milliseconds do hash entries expire.

htable-gcinterval msec How many milliseconds between garbage collection
intervals.

Examples:

31

Allow up to 5 connections per second per client to SMTP server:

server smtp accept with hashlimit smtplimit upto 5/s

You can monitor it using the file /proc/net/ipt_hashlimit/smtplimit

6.4.3.3 accept with connlimit upto|above limit [mask mask]
[saddr|daddr]

accept with connlimit matches on the number of connections per IP.

saddr matches on source IP. daddr matches on destination IP. mask groups IPs
with the mask given upto matches when the number of connections is up to the
given limit above matches when the number of connections above to the given
limit

The number of connections counted are system wide, not service specific. For
example for saddr, you cannot connlimit 2 connections for SSH and 4 for SMTP.
If you connlimit 2 connections for SSH, then the first 2 connections of a client
can be SSH. If a client has already 2 connections to another service, the client
will not be able to connect to SSH.

So, connlimit can safely be used:

• with daddr to limit the connections a server can accept
• with saddr to limit the total connections per client to all services.

6.4.3.4 accept with limit requests/period burst [overflow action]

accept with limit allows the traffic, with new connections limited to re-
quests/period with a maximum burst. Run iptables -m limit --help for
more information.

The default overflow action is to REJECT the excess connections (DROP
would produce timeouts on otherwise valid service clients).

Examples:

server smtp accept with limit 10/sec 100

server smtp accept with limit 10/sec 100 overflow drop

32

6.4.3.5 accept with recent name seconds hits

accept with recent allows the traffic matching the rules to reach its desti-
nation, limited per remote IP to hits per seconds. Run iptables -m recent
--help for more information.

The name parameter is used to allow multiple rules to share the same table of
recent IPs.

For example, to allow only 2 connections every 60 seconds per remote IP, to the
smtp server:

server smtp accept with recent mail 60 2

Note
When a new connection is not allowed, the traffic will continue to be
matched by the rest of the firewall. In other words, if the traffic is
not allowed due to the limitations set here, it is not dropped, it is
just not matched by this rule.

6.4.3.6 accept with knock name

accept with knock allows easy integration with knockd, a server that allows
you to control access to services by sending certain packets to “knock” on the
door, before the door is opened for service.

The name is used to build a special chain knock_<name> which contains rules to
allow established connections to work. If knockd has not allowed new connections
any traffic entering this chain will just return back and continue to match against
the other rules until the end of the firewall.

For example, to allow HTTPS requests based on a knock write:

server https accept with knock hidden

then configure knockd to enable the HTTPS service with:

iptables -A knock_hidden -s %IP% -j ACCEPT

and disable it with:

iptables -D knock_hidden -s %IP% -j ACCEPT

33

http://www.zeroflux.org/projects/knock/

You can use the same knock name in more than one FireHOL rule to en-
able/disable all the services based on a single knockd configuration entry.

Note
There is no need to match anything other than the IP in knockd.
FireHOL already matches everything else needed for its rules to work.

6.4.3.7 reject

reject discards the traffic matching the rules and sends a rejecting message
back to the sender.

6.4.3.8 reject with message

When used with with the specific message to return can be specified. Run
iptables -j REJECT --help for a list of the --reject-with values which can
be used for message. See REJECT WITH MESSAGES for some examples.

The default (no message specified) is to send tcp-reset when dealing with TCP
connections and icmp-port-unreachable for all other protocols.

For example:

UNMATCHED_INPUT_POLICY="reject with host-prohib"

policy reject with host-unreach

server ident reject with tcp-reset

6.4.3.9 drop; deny

drop discards the traffic matching the rules. It does so silently and the sender
will need to timeout to conclude it cannot reach the service.

deny is a synonym for drop. For example, either of these would silently discard
SMTP traffic:

server smtp drop

server smtp deny

34

6.4.3.10 return

return will return the flow of processing to the parent of the current command.

Currently, the only time return can be used meaningfully used is as a policy
for an interface definition. Unmatched traffic will continue being processed with
the possibility of being matched by a later definition. For example:

policy return

6.4.3.11 tarpit

tarpit captures and holds incoming TCP connections open.

Connections are accepted and immediately switched to the persist state (0 byte
window), in which the remote side stops sending data and asks to continue every
60-240 seconds.

Attempts to close the connection are ignored, forcing the remote side to time
out the connection after 12-24 minutes.

Example:

server smtp tarpit

Note
As the kernel conntrack modules are always loaded by FireHOL,
some per-connection resources will be consumed. See this bug report
for details.

The following actions also exist but should not be used under normal circum-
stances:

6.4.3.12 mirror

mirror returns the traffic it receives by switching the source and destination
fields. REJECT will be used for traffic generated by the local host.

Warning
The MIRROR target was removed from the Linux kernel due to its
security implications.
MIRROR is dangerous; use it with care and only if you understand
what you are doing.

35

http://bugs.sanewall.org/sanewall/issues/10

6.4.3.13 redirect; redirect to-port port

redirect is used internally by FireHOL helper commands.

Only FireHOL developers should need to use this action directly.

6.4.4 REJECT WITH MESSAGES

The following RFCs contain information relevant to these messages:

• RFC 1812
• RFC 1122
• RFC 792

icmp-net-unreachable; net-unreach ICMP network unreachable
Generated by a router if a forwarding path (route) to the destination
network is not available.
From RFC 1812, section 5.2.7.1. See RFC 1812 and RFC 792.

Note
Use with care. The sender and the routers between you and the
sender may conclude that the whole network your host resides
in is unreachable, and prevent other traffic from reaching you.

icmp-host-unreachable; host-unreach ICMP host unreachable
Generated by a router if a forwarding path (route) to the destination
host on a directly connected network is not available (does not respond to
ARP).
From RFC 1812, section 5.2.7.1. See RFC 1812 and RFC 792.

Note
Use with care. The sender and the routers between you and the
sender may conclude that your host is entirely unreachable, and
prevent other traffic from reaching you.

icmp-proto-unreachable; proto-unreach ICMP protocol unreachable
Generated if the transport protocol designated in a datagram is not sup-
ported in the transport layer of the final destination.
From RFC 1812, section 5.2.7.1. See RFC 1812 and RFC 792.

36

http://www.ietf.org/rfc/rfc1812.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc0792.txt

icmp-port-unreachable; port-unreach ICMP port unreachable
Generated if the designated transport protocol (e.g. TCP, UDP, etc.) is
unable to demultiplex the datagram in the transport layer of the final
destination but has no protocol mechanism to inform the sender.
From RFC 1812, section 5.2.7.1. See RFC 1812 and RFC 792.
Generated by hosts to indicate that the required port is not active.

icmp-net-prohibited; net-prohib ICMP communication with destination
network administratively prohibited
This code was intended for use by end-to-end encryption devices used by
U.S. military agencies. Routers SHOULD use the newly defined Code
13 (Communication Administratively Prohibited) if they administratively
filter packets.
From RFC 1812, section 5.2.7.1. See RFC 1812 and RFC 1122.

Note
This message may not be widely understood.

icmp-host-prohibited; host-prohib ICMP communication with destination
host administratively prohibited
This code was intended for use by end-to-end encryption devices used by
U.S. military agencies. Routers SHOULD use the newly defined Code
13 (Communication Administratively Prohibited) if they administratively
filter packets.
From RFC 1812, section 5.2.7.1. See RFC 1812 and RFC 1122.

Note
This message may not be widely understood.

tcp-reset TCP RST
The port unreachable message of the TCP stack.
See RFC 1122.

Note
tcp-reset is useful when you want to prevent timeouts on
rejected TCP services where the client incorrectly ignores ICMP
port unreachable messages.

6.4.5 SEE ALSO

• firehol(1) - FireHOL program

37

• firehol.conf(5) - FireHOL configuration
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• firehol-params(5) - optional rule parameters
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

38

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.5 firehol-blacklist(5)

6.5.1 NAME

firehol-blacklist - set up a unidirectional or bidirectional blacklist

6.5.2 SYNOPSIS

{ blacklist | blacklist4 | blacklist6 } [type] [inface device] [log “text”] [
connlog “text”] [loglimit “text”] [accounting accounting_name] ip. . . [except
rule-params [or rule-params [or . . .]]]

6.5.3 DESCRIPTION

The blacklist helper command creates a blacklist for the ip list given (which
can be in quotes or not).

If the type full or all is supplied (or no type at all), a bidirectional stateless
blacklist will be generated. The firewall will REJECT all traffic going to the IP
addresses and DROP all traffic coming from them.

If the type stateful is supplied, a bidirectional stateful blacklist will be gener-
ated. The firewall will REJECT all traffic going to the IP addresses and DROP
all traffic coming from them.

The differences between full and stateful are:

1. stateful is resource efficient, since only the packets that initiate connec-
tions are examined. Established connections will never be re-tested against
the blacklist.

2. when using full and an ipset is updated to match the IP of an established
connection, this established connection will immediately be blocked too.

If the type input or him, her, it, this, these is supplied, a unidirectional
stateful blacklist will be generated. Connections can be established to such IP
addresses, but the IP addresses will not be able to connect to the firewall or
hosts protected by it.

Using log (log every packet), connlog (log connections once), or loglimit (log
packets according to global throttling settings), the text will be logged when
matching packets are found.

39

Using inface, the blacklist will be created on the interface device only (this
includes forwarded traffic).

accounting will update the NFACCT accounting with the name given.

If the keyword except is found, then all the parameters following it are rules to
match packets that should excluded from the blacklist (i.e. they are a whitelist
for this blacklist). See firehol-params(5) for more details.

Blacklists must be declared before the first router or interface.

IP Lists for abuse, malware, attacks, proxies, anonymizers, etc can be downloaded
with the contrib/update-ipsets.sh script. Information about the supported IP
Lists can be found at FireHOL IP Lists

6.5.4 EXAMPLES

blacklist full 192.0.2.1 192.0.2.2
blacklist input "192.0.2.3 192.0.2.4"
blacklist full inface eth0 log "BADGUY" 192.0.1.1 192.0.1.2

6.5.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation
• FireHOL IP Lists

40

http://iplists.firehol.org/
http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/
http://iplists.firehol.org/

6.6 firehol-classify(5)

6.6.1 NAME

firehol-classify - classify traffic for traffic shaping tools

6.6.2 SYNOPSIS

{ classify | classify46 } class [rule-params]

classify4 class [rule-params]

classify6 class [rule-params]

6.6.3 DESCRIPTION

The classify helper command puts matching traffic into the specified traffic
shaping class.

The class is a class as used by iptables(8) and tc(8) (e.g. MAJOR:MINOR).

The rule-params define a set of rule parameters to match the traffic that is to be
classified. See firehol-params(5) for more details.

Any classify commands will affect all traffic matched. They must be declared
before the first router or interface.

6.6.4 EXAMPLES

Put all smtp traffic leaving via eth1 in class 1:1
classify 1:1 outface eth1 proto tcp dport 25

6.6.5 SEE ALSO

• firehol-params(5) - optional rule parameters
• iptables(8) - administration tool for IPv4 firewalls

41

http://ipset.netfilter.org/iptables.man.html

• ip6tables(8) - administration tool for IPv6 firewalls
• tc(8) - show / manipulate traffic control settings
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation
• Linux Advanced Routing & Traffic Control HOWTO

42

http://ipset.netfilter.org/ip6tables.man.html
http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/
http://lartc.org/howto/

6.7 firehol-client(5)

6.7.1 NAME

firehol-client - client command

6.7.2 SYNOPSIS

{ client | client46 } service action [rule-params]

client4 service action [rule-params]

client6 service action [rule-params]

6.7.3 DESCRIPTION

The client subcommand defines a client of a service on an interface or router.
Any rule-params given to a parent interface or router are inherited by the client,
but are reversed.

For FireHOL a client is the source of a request. Even though this is more
complex for some multi-socket services, to FireHOL a client always initiates the
connection.

The service parameter is one of the supported service names from firehol-
services(5). Multiple services may be specified, space delimited in quotes.

The action can be any of the actions listed in firehol-actions(5).

The rule-params define a set of rule parameters to further restrict the traffic
that is matched to this service. See firehol-params(5) for more details.

Note
Writing client4 is equivalent to writing ipv4 client and ensures
this subcommand is applied only in the IPv4 firewall rules.
Writing client6 is equivalent to writing ipv6 client and ensures
this subcommand is applied only in the IPv6 firewall rules.
Writing client46 is equivalent to writing both client and ensures
this subcommand is applied in both the IPv4 and IPv6 firewall rules;
it cannot be used as part an interface or router that is IPv4 or IPv6
only.
The default client inherits its behaviour from the enclosing interface
or router.

43

6.7.4 EXAMPLES

client smtp accept

client "smtp pop3" accept

client smtp accept src 192.0.2.1

client smtp accept log "mail packet" src 192.0.2.1

6.7.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-modifiers(5) - ipv4/ipv6 selection
• firehol-services(5) - services list
• firehol-actions(5) - actions for rules
• firehol-params(5) - optional rule parameters
• firehol-server(5) - server subcommand
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

44

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.8 firehol-connmark(5)

6.8.1 NAME

firehol-connmark - set a stateful mark on a connection

6.8.2 SYNOPSIS

Warning - this manual page is out of date for nightly build/v3 behaviour

{ connmark | connmark46 } { value | save | restore } chain rule-params

connmark4 { value | save | restore } chain rule-params

connmark6 { value | save | restore } chain rule-params

6.8.3 DESCRIPTION

The connmark helper command sets a mark on a whole connection. It applies
to both directions.

Note
To set a mark on packets matching particular rules, regardless of any
connection, see firehol-mark(5).

The value is the mark value to set (a 32 bit integer). If you specify save then
the mark on the matched packet will be turned into a connmark. If you specify
restore then the matched packet will have its mark set to the current connmark.

The chain will be used to find traffic to mark. It can be any of the iptables(8)
built in chains belonging to the mangle table. The chain names are: INPUT,
FORWARD, OUTPUT, PREROUTING and POSTROUTING. The names are
case-sensitive.

The rule-params define a set of rule parameters to match the traffic that is to be
marked within the chosen chain. See firehol-params(5) for more details.

Any connmark commands will affect all traffic matched. They must be declared
before the first router or interface.

45

6.8.4 EXAMPLES

Consider a scenario with 3 ethernet ports, where eth0 is on the local LAN, eth1
connects to ISP ‘A’ and eth2 to ISP ‘B’. To ensure traffic leaves via the same
ISP as it arrives from you can mark the traffic.

mark connections when they arrive from the ISPs
connmark 1 PREROUTING inface eth1
connmark 2 PREROUTING inface eth2

restore the mark (from the connmark) when packets arrive from the LAN
connmark restore OUTPUT
connmark restore PREROUTING inface eth0

It is then possible to use the commands from iproute2 such as ip(8), to pick the
correct routing table based on the mark on the packets.

6.8.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-params(5) - optional rule parameters
• firehol-mark(5) - mark traffic for traffic shaping tools
• iptables(8) - administration tool for IPv4 firewalls
• ip6tables(8) - administration tool for IPv6 firewalls
• ip(8) - show / manipulate routing, devices, policy routing and tunnels
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation
• Linux Advanced Routing & Traffic Control HOWTO

46

http://ipset.netfilter.org/iptables.man.html
http://ipset.netfilter.org/ip6tables.man.html
http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/
http://lartc.org/howto/

6.9 firehol-defaults.conf(5)

6.9.1 NAME

firehol-defaults.conf - control variables for FireHOL

6.9.2 SYNOPSIS

Defaults in /etc/firehol/firehol-defaults.conf:

• DEFAULT_INTERFACE_POLICY=“DROP”
• DEFAULT_ROUTER_POLICY=“RETURN”
• UNMATCHED_INPUT_POLICY=“DROP”
• UNMATCHED_OUTPUT_POLICY=“DROP”
• UNMATCHED_FORWARD_POLICY=“DROP”
• FIREHOL_INPUT_ACTIVATION_POLICY=“ACCEPT”
• FIREHOL_OUTPUT_ACTIVATION_POLICY=“ACCEPT”
• FIREHOL_FORWARD_ACTIVATION_POLICY=“ACCEPT”
• FIREHOL_LOG_MODE=“LOG”
• FIREHOL_LOG_LEVEL=see notes
• FIREHOL_LOG_OPTIONS=“–log-level warning”
• FIREHOL_LOG_FREQUENCY=“1/second”
• FIREHOL_LOG_BURST=“5”
• FIREHOL_LOG_PREFIX=“”
• FIREHOL_DROP_INVALID=“0”
• DEFAULT_CLIENT_PORTS=“1000:65535”
• FIREHOL_NAT=“0”
• FIREHOL_ROUTING=“0”
• FIREHOL_AUTOSAVE=see notes
• FIREHOL_AUTOSAVE6=see notes
• FIREHOL_LOAD_KERNEL_MODULES=“1”
• FIREHOL_TRUST_LOOPBACK=“1”
• FIREHOL_DROP_ORPHAN_TCP_ACK_FIN=“1”
• FIREHOL_DROP_ORPHAN_TCP_ACK_RST=“1”
• FIREHOL_DROP_ORPHAN_TCP_ACK=“1”
• FIREHOL_DROP_ORPHAN_TCP_RST=“1”
• FIREHOL_DROP_ORPHAN_IPV4_ICMP_TYPE3=“1”
• WAIT_FOR_IFACE=“”

47

6.9.3 DESCRIPTION

From FireHOL 3 upwards, variables which control FireHOL behaviour are held
in a separate file: /etc/firehol/firehol-defaults.conf.

Some variables can also be set in the main firehol.conf file but that is not
recommended, since they may be used before the main configuration is processed.

FireHOL also sets some variables before processing the configuration file which
you can use as part of your configuration. These are described in firehol.conf(5).

6.9.4 VARIABLES

DEFAULT_INTERFACE_POLICY This variable controls the default ac-
tion to be taken on traffic not matched by any rule within an interface. It
can be overridden using firehol-policy(5).
Packets that reach the end of an interface without an action of return or
accept are logged. You can control the frequency of this logging by altering
FIREHOL_LOG_FREQUENCY.
Example:

DEFAULT_INTERFACE_POLICY="REJECT"

DEFAULT_ROUTER_POLICY This variable controls the default action
to be taken on traffic not matched by any rule within a router. It can be
overridden using firehol-policy(5).
Packets that reach the end of a router without an action of return or
accept are logged. You can control the frequency of this logging by altering
FIREHOL_LOG_FREQUENCY.
Example:

DEFAULT_ROUTER_POLICY="REJECT"

UNMATCHED_{INPUT|OUTPUT|FORWARD}_POLICY These
variables control the default action to be taken on traffic not matched
by any interface or router definition that was incoming, outgoing or for
forwarding respectively. Any supported value from firehol-actions(5) may
be set.

48

All packets that reach the end of a chain are logged, regardless of these
settings. You can control the frequency of this logging by altering FIRE-
HOL_LOG_FREQUENCY.
Example:

UNMATCHED_INPUT_POLICY="REJECT"
UNMATCHED_OUTPUT_POLICY="REJECT"
UNMATCHED_FORWARD_POLICY="REJECT"

FIREHOL_{INPUT|OUTPUT|FORWARD}_ACTIVATION_POLICY
These variables control the default action to be taken on traffic during
firewall activation for incoming, outgoing and forwarding respectively.
Acceptable values are ACCEPT, DROP and REJECT.
FireHOL defaults all values to ACCEPT so that your communications con-
tinue to work uninterrupted.
If you wish to prevent connections whilst the new firewall is activating, set
these values to DROP. This is important to do if you are using all or any
to match traffic; connections established during activation will continue
even if they would not be allowed once the firewall is established.
Example:

FIREHOL_INPUT_ACTIVATION_POLICY="DROP"
FIREHOL_OUTPUT_ACTIVATION_POLICY="DROP"
FIREHOL_FORWARD_ACTIVATION_POLICY="DROP"

FIREHOL_LOG_MODE This variable controls method that FireHOL uses
for logging.
Acceptable values are LOG (normal syslog) and ULOG (netfilter ulogd). When
ULOG is selected, FIREHOL_LOG_LEVEL is ignored.
Example:

FIREHOL_LOG_MODE="ULOG"

To see the available options run: /sbin/iptables -j LOG --help or
/sbin/iptables -j ULOG --help

FIREHOL_LOG_LEVEL This variable controls the level at which events
will be logged to syslog.
To avoid packet logs appearing on your console you should ensure klogd
only logs traffic that is more important than that produced by FireHOL.
Use the following option to choose an iptables(8) log level (alpha or numeric)
which is higher than the -c of klogd.

49

iptables klogd description

emerg (0) 0 system is unusable
alert (1) 1 action must be taken immediately
crit (2) 2 critical conditions
error (3) 3 error conditions
warning (4) 4 warning conditions
notice (5) 5 normal but significant condition
info (6) 6 informational
debug (7) 7 debug-level messages

Table 4: iptables/klogd levels

Note
The default for klogd is generally to log everything (7 and lower)
and the default level for iptables(4) is to log as warning (4).

FIREHOL_LOG_OPTIONS This variable controls the way in which events
will be logged to syslog.
Example:

FIREHOL_LOG_OPTIONS="--log-level info \
--log-tcp-options --log-ip-options"

To see the available options run: /sbin/iptables -j LOG --help

FIREHOL_LOG_FREQUENCY; FIREHOL_LOG_BURST These
variables control the frequency that each logging rule will write events to
syslog. FIREHOL_LOG_FREQUENCY is set to the maximum average
frequency and FIREHOL_LOG_BURST specifies the maximum initial
number.
Example:

FIREHOL_LOG_FREQUENCY="30/minute"
FIREHOL_LOG_BURST="2"

To see the available options run: /sbin/iptables -m limit --help

50

FIREHOL_LOG_PREFIX This value is added to the contents of each
logged line for easy detection of FireHOL lines in the system logs. By
default it is empty.
Example:

FIREHOL_LOG_PREFIX="FIREHOL:"

FIREHOL_DROP_INVALID If set to 1, this variable causes FireHOL to
drop all packets matched as INVALID in the iptables(8) connection tracker.
You may be better off using firehol-protection(5) to control matching of
INVALID packets and others on a per-interface and per-router basis.

Note
Care must be taken on IPv6 interfaces, since ICMPv6 packets
such as Neighbour Discovery are not tracked, meaning they are
marked as INVALID.

Example:

FIREHOL_DROP_INVALID="1"

DEFAULT_CLIENT_PORTS This variable controls the port range that
is used when a remote client is specified. For clients on the local host,
FireHOL finds the exact client ports by querying the kernel options.
Example:

DEFAULT_CLIENT_PORTS="0:65535"

FIREHOL_NAT If set to 1, this variable causes FireHOL to load the NAT
kernel modules. If you make use of the NAT helper commands, the variable
will be set to 1 automatically.
Example:

FIREHOL_NAT="1"

FIREHOL_ROUTING If set to 1, this variable causes FireHOL to enable
routing in the kernel. If you make use of router definitions or certain
helper commands the variable will be set to 1 automatically.
Example:

51

FIREHOL_ROUTING="1"

FIREHOL_AUTOSAVE; FIREHOL_AUTOSAVE6 These variables
specify the file of IPv4/IPv6 rules that will be created when firehol(1) is
called with the save argument.
If the variable is not set, a system-specific value is used which was defined
at configure-time. If no value was chosen then the save fails.
Example:

FIREHOL_AUTOSAVE="/tmp/firehol-saved-ipv4.txt"
FIREHOL_AUTOSAVE6="/tmp/firehol-saved-ipv6.txt"

FIREHOL_LOAD_KERNEL_MODULES If set to 0, this variable
forces FireHOL to not load any kernel modules. It is needed only if the
kernel has modules statically included and in the rare event that FireHOL
cannot access the kernel configuration.
Example:

FIREHOL_LOAD_KERNEL_MODULES="0"

FIREHOL_TRUST_LOOPBACK If set to 0, the loopback device “lo” will
not be trusted and you can write standard firewall rules for it.

Warning
If you do not set up appropriate rules, local processes will not be
able to communicate with each other which can result in serious
breakages.

By default “lo” is trusted and all INPUT and OUTPUT traffic is accepted
(forwarding is not included).
Example:

FIREHOL_TRUST_LOOPBACK="0"

FIREHOL_DROP_ORPHAN_TCP_ACK_FIN If set to 1, FireHOL
will drop all orphan such packets without logging them.
In busy environments the iptables(8) connection tracker removes connection
tracking list entries as soon as it receives a FIN. This makes the ACK FIN
appear as an invalid packet which will normally be logged by FireHOL.
Example:

52

FIREHOL_DROP_ORPHAN_TCP_ACK_FIN="1"

FIREHOL_DROP_ORPHAN_TCP_ACK_RST If set to 1, FireHOL
will drop all orphan such packets without logging them.
In busy environments the iptables(8) connection tracker removes connection
tracking list entries as soon as it receives a RST. This makes the ACK RST
appear as an invalid packet which will normally be logged by FireHOL.
Example:

FIREHOL_DROP_ORPHAN_TCP_ACK_RST="1"

FIREHOL_DROP_ORPHAN_TCP_ACK If set to 1, FireHOL will
drop all orphan such packets without logging them.
In busy environments the iptables(8) connection tracker removes unneeded
connection tracking list entries. This makes ACK packets appear as an
invalid packet which will normally be logged by FireHOL.
Example:

FIREHOL_DROP_ORPHAN_TCP_ACK="1"

FIREHOL_DROP_ORPHAN_TCP_RST If set to 1, FireHOL will
drop all orphan such packets without logging them.
In busy environments the iptables(8) connection tracker removes unneeded
connection tracking list entries. This makes RST packets appear as an
invalid packet which will normally be logged by FireHOL.
Example:

FIREHOL_DROP_ORPHAN_TCP_RST="1"

FIREHOL_DROP_ORPHAN_IPV4_ICMP_TYPE3 If set to 1,
FireHOL will drop all orphan ICMP destination unreachable packets
without logging them.
In busy environments the iptables(8) connection tracker removes unneeded
connection tracking list entries. This makes ICMP destination unreachable
appear as an invalid packet which will normally be logged by FireHOL.
Example:

FIREHOL_DROP_ORPHAN_IPV4_ICMP_TYPE3="1"

53

WAIT_FOR_IFACE If set to the name of a network device (e.g. eth0),
FireHOL will wait until the device is up (or until 60 seconds have elapsed)
before continuing.
A device does not need to be up in order to have firewall rules created for
it, so this option should only be used if you have a specific need to wait
(e.g. the network must be queried to determine the hosts or ports which
will be firewalled).
Example:

WAIT_FOR_IFACE="eth0"

6.9.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-nat(5) - nat, snat, dnat, redirect helpers
• firehol-actions(5) - actions for rules
• iptables(8) - administration tool for IPv4 firewalls
• ip6tables(8) - administration tool for IPv6 firewalls
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

54

http://ipset.netfilter.org/iptables.man.html
http://ipset.netfilter.org/ip6tables.man.html
http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.10 firehol-dscp(5)

6.10.1 NAME

firehol-dscp - set the DSCP field in the packet header

6.10.2 SYNOPSIS

dscp { value | class classid } chain rule-params

6.10.3 DESCRIPTION

The dscp helper command sets the DSCP field in the header of packets traffic,
to allow QoS shaping.

Note
There is also a dscp parameter which allows matching DSCP values
within individual rules (see firehol-params(5)).

Set value to a decimal or hexadecimal (0xnn) number to set an explicit DSCP
value or use class classid to use an iptables(8) DiffServ class, such as EF, BE,
CSxx or AFxx (see iptables -j DSCP --help for more information).

The chain will be used to find traffic to mark. It can be any of the iptables(8)
built in chains belonging to the mangle table. The chain names are: INPUT,
FORWARD, OUTPUT, PREROUTING and POSTROUTING. The names are
case-sensitive.

The rule-params define a set of rule parameters to match the traffic that is to be
marked within the chosen chain. See firehol-params(5) for more details.

Any dscp commands will affect all traffic matched. They must be declared
before the first router or interface.

6.10.4 EXAMPLES

55

set DSCP field to 32, packets sent by the local machine
dscp 32 OUTPUT

set DSCP field to 32 (hex 20), packets routed by the local machine
dscp 0x20 FORWARD

set DSCP to DiffServ class EF, packets routed by the local machine
and destined for port TCP/25 of 198.51.100.1
dscp class EF FORWARD proto tcp dport 25 dst 198.51.100.1

6.10.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-params(5) - optional rule parameters
• iptables(8) - administration tool for IPv4 firewalls
• ip6tables(8) - administration tool for IPv6 firewalls
• ip(8) - show / manipulate routing, devices, policy routing and tunnels
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation
• Linux Advanced Routing & Traffic Control HOWTO

56

http://ipset.netfilter.org/iptables.man.html
http://ipset.netfilter.org/ip6tables.man.html
http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/
http://lartc.org/howto/

6.11 firehol-group(5)

6.11.1 NAME

firehol-group - group commands with common options

6.11.2 SYNOPSIS

group with rule-params

group end

6.11.3 DESCRIPTION

The group command allows you to group together multiple client and server
commands.

Grouping commands with common options (see firehol-params(5)) allows the
option values to be checked only once in the generated firewall rather than once
per service, making it more efficient.

Nested groups may be used.

6.11.4 EXAMPLES

This:

interface any world
client all accept
server http accept

Provide these services to trusted hosts only
server "ssh telnet" accept src "192.0.2.1 192.0.2.2"

can be replaced to produce a more efficient firewall by this:

57

interface any world
client all accept
server http accept

Provide these services to trusted hosts only
group with src "192.0.2.1 192.0.2.2"

server telnet accept
server ssh accept

group end

6.11.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• firehol-params(5) - optional rule parameters
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

58

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.12 firehol-interface(5)

6.12.1 NAME

firehol-interface - interface definition

6.12.2 SYNOPSIS

{ interface | interface46 } real-interface name rule-params
interface4 real-interface name rule-params
interface6 real-interface name rule-params

6.12.3 DESCRIPTION

An interface definition creates a firewall for protecting the host on which the
firewall is running.
The default policy is DROP, so that if no subcommands are given, the firewall
will just drop all incoming and outgoing traffic using this interface.
The behaviour of the defined interface is controlled by adding subcommands
from those listed in INTERFACE SUBCOMMANDS.

Note
Forwarded traffic is never matched by the interface rules, even if it
was originally destined for the firewall but was redirected using NAT.
Any traffic to be passed through the firewall for whatever reason
must be in a router (see firehol-router(5)).

Note
Writing interface4 is equivalent to writing ipv4 interface and
ensures the defined interface is created only in the IPv4 firewall along
with any rules within it.
Writing interface6 is equivalent to writing ipv6 interface and
ensures the defined interface is created only in the IPv6 firewall along
with any rules within it.
Writing interface46 is equivalent to writing both interface and
ensures the defined interface is created in both the IPv4 and IPv6
firewalls. Any rules within it will also be applied to both, unless they
specify otherwise.

59

6.12.4 PARAMETERS

real-interface This is the interface name as shown by ip link show. Generally
anything iptables(8) accepts is valid.
The + (plus sign) after some text will match all interfaces that start with
this text.
Multiple interfaces may be specified by enclosing them within quotes,
delimited by spaces for example:

interface "eth0 eth1 ppp0" myname

name This is a name for this interface. You should use short names (10
characters maximum) without spaces or other symbols.
A name should be unique for all FireHOL interface and router definitions.

rule-params The set of rule parameters to further restrict the traffic that is
matched to this interface.
See firehol-params(5) for information on the parameters that can be used.
Some examples:

interface eth0 intranet src 192.0.2.0/24

interface eth0 internet src not "${UNROUTABLE_IPS}"

See firehol.conf(5) for an explanation of ${UNROUTABLE_IPS}.

6.12.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-params(5) - optional rule parameters
• firehol-modifiers(5) - ipv4/ipv6 selection
• firehol-router(5) - router definition
• firehol-iptables(5) - iptables helper
• firehol-masquerade(5) - masquerade helper
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

60

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.12.5.1 Interface Subcommands

• firehol-policy(5) - policy command
• firehol-protection(5) - protection command
• firehol-server(5) - server, route commands
• firehol-client(5) - client command
• firehol-group(5) - group command

61

6.13 firehol-ipset(5)

6.13.1 NAME

firehol-ipset - configure ipsets

6.13.2 SYNOPSIS

ipset command name options

6.13.3 DESCRIPTION

FireHOL has an ipset helper. It is a wrapper around the real ipset command
and is handled internally within FireHOL in such a way so that the ipset
collections defined in the configuration will be activated before activating the
firewall.

FireHOL is also smart enough to restore the ipsets after a reboot, before it
restores the firewall, so that everything will work as seamlessly as possible.

The ipset helper has the same syntax with the real ipset command. So in
FireHOL you just add the ipset statements you need, and FireHOL will do the
rest.

Keep in mind that each ipset collection is either IPv4 or IPv6. In FireHOL
prefix ipset with either ipv4 or ipv6 and FireHOL will choose the right IP
version (there is also ipset4 and ipset6).

Also, do not add -! to ipset statements given in firehol.conf. FireHOL will
batch import all ipsets and this option is not needed.

6.13.4 FireHOL ipset extensions

The features below are extensions of ipset that can only be used from within
firehol.conf. They will not work on a terminal.

The FireHOL helper allows mass import of ipset collections from files. This is
done with ipset addfile command.

The ipset addfile command will get a filename, remove all comments (anything
after a # on the same line), trim any empty lines and spaces, and add all the

62

remaining lines to ipset, as if each line of the file was run with ipset add
COLLECTION_NAME IP_FROM_FILE [other options].

The syntax of the ipset addfile command is:

ipset addfile *name* [ip|net] *filename* [*other ipset add options*]

name is the collection to add the IPs.

ip is optional and will select all the lines of the file that do not contain a /.

net is optional and will select all the lines of the file that contain a /.

filename is the filename to read. You can give absolute filenames and relative
filenames (to /etc/firehol).

other ipset add options is whatever else ipset add supports, that you are
willing to give for each line.

The ipset add command implemented in FireHOL also allows you to give
multiple IPs separated by comma or enclosed in quotes and separated by space.

6.13.5 EXAMPLES

ipv4 ipset create badguys hash:ip
ipv4 ipset add badguys 1.2.3.4
ipv4 ipset addfile badguys file-with-the-bad-guys-ips.txt
...
ipv4 blacklist full ipset:badguys

example with multiple IPs
ipv4 ipset create badguys hash:ip
ipv4 ipset add badguys 1.2.3.4,5.6.7.8,9.10.11.12 # << comma separated
ipv4 ipset add badguys "11.22.33.44 55.66.77.88" # << space separated in quotes

ipsets with IP Lists for abuse, malware, attacks, proxies, anonymizers, etc can
be downloaded with the contrib/update-ipsets.sh script. Information about the
supported ipsets can be found at FireHOL IP Lists

6.13.6 SEE ALSO

• firehol(1) - FireHOL program

63

http://iplists.firehol.org/

• firehol.conf(5) - FireHOL configuration
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• firehol-params(5) - optional rule parameters
• firehol-masquerade(5) - masquerade helper
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation
• FireHOL IP Lists
• NAT HOWTO
• netfilter flow diagram

64

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/
http://iplists.firehol.org/
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO-6.html
http://upload.wikimedia.org/wikipedia/commons/3/37/Netfilter-packet-flow.svg

6.14 firehol-iptables(5)

6.14.1 NAME

firehol-iptables - include custom iptables commands

6.14.2 SYNOPSIS

iptables argument. . .

ip6tables argument. . .

6.14.3 DESCRIPTION

The iptables and ip6tables helper commands pass all of their arguments to
the real iptables(8) or ip6tables(8) at the appropriate point during run-time.

Note
When used in an interface or router, the result will not have
a direct relationship to the enclosing definition as the parameters
passed are only those you supply.

You should not use /sbin/iptables or /sbin/ip6tables directly in a FireHOL
configuration as they will run before FireHOL activates its firewall. This means
that the commands are applied to the previously running firewall, not the new
firewall, and will be lost when the new firewall is activated.

The iptables and ip6tables helpers are provided to allow you to hook in
commands safely.

6.14.4 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• iptables(8) - administration tool for IPv4 firewalls
• ip6tables(8) - administration tool for IPv6 firewalls
• FireHOL Website

65

http://ipset.netfilter.org/iptables.man.html
http://ipset.netfilter.org/ip6tables.man.html
http://firehol.org/

• FireHOL Online PDF Manual
• FireHOL Online Documentation

66

http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.15 firehol-iptrap(5)

6.15.1 NAME

firehol-iptrap - dynamically put IP addresses in an ipset

6.15.2 SYNOPSIS

{ iptrap | iptrap4 | iptrap6 } ipset type seconds [timeout | counters] [method
method] [rule-params] [except [rule-params]]. . .

{ ipuntrap | ipuntrap4 | ipuntrap6 } ipset type [timeout | counters] [method
method] [rule-params] [except [rule-params]]. . .

6.15.3 DESCRIPTION

iptrap adds the IP addresses of the matching packets to ipset.

ipuntrap deletes the IP addresses of the matching packets from ipset.

Both helpers do not affect the flow of traffic. They do not ACCEPT, REJECT, DROP
packets or affect the firewall in any way.

ipset is the name of the ipset to use.

type selects which of the IP addresses of the matching packets will be used
(added or removed from the ipset). type can be src, dst, src,dst, dst,src,
etc. If type is a pair, then the ipset must be an ipset of pairs too.

seconds is required by iptrap and gives the duration in seconds of the lifetime
of each IP address that is added to ipset. Every matching packet will refresh
this duration for the IP address in the ipset. The Linux kernel will automatically
remove the IP from the ipset when this time expires. The user may monitor the
remaining time for each IP, by running ipset list NAME (where NAME is the
ipset parameter given in the iptrap command).

The seconds value default will not set any seconds. The ipset default will be
used.

A seconds of 0 (zero), writes to the ipset permanently (this is a feature of the
ipset command, not the ipset FireHOL helper).

The keywords timeout and counters are mutually exclusive. timeout is the
default and means that each IP address every time is matched its timeout will

67

be refreshed, while counters means that its packets and bytes counters will be
refreshed. Unfortunately the kernel either re-add the IP in the ipset with the
new timeout - but its counters will be lost, or just the counters will be updated,
but the timeout will not be refreshed.

method is defines the storage method of the underlying ipset. It accepts all the
types the ipset commands accepts.

method and type should match. For example if method is hash:ip then method
should be either src or dst. If method is hash:ip,ip then method should
be either src,dst or dst,src. If method is hash:ip,port,ip method should
be src,src,dst or src,dst,dst or dst,src,src or dst,dst,src. For more
information check the manual page of the ipset command.

The rule-params define a set of rule parameters to restrict the traffic that is
matched to this helper. See firehol-params(5) for more details.

except rule-params are used to exclude traffic, i.e. traffic that normally is
matched by the first set of rule-params, will be excluded if matched by the
second.

iptrap and ipuntrap are hooked on PREROUTING so it is only useful for
incoming traffic.

iptrap and ipuntrap cannot setup both IPv4 and IPv6 traps with one call.
The reason is that the ipset can either be IPv4 or IPv6.

Both helpers will create the ipset specified, if that ipset is not already created
by other statements. When the ipset is created by the iptrap helper, the ipset
will not be reset (emptied) when the firewall is restarted.

The ipset options used when these helpers create ipsets can be controlled with
the variable IPTRAP_DEFAULT_IPSET_OPTIONS.

6.15.4 EXAMPLES

Example: mini-IDS
add to the ipset `trap` for an hour (3600 seconds) all IPs from all packets
coming from eth0 and going to tcp/3306 (mysql).
iptrap4 src trap 3600 inface eth0 proto tcp dport 3306 log "TRAPPED HTTP"
block them
blacklist4 full inface eth0 log "BLOCKED" src ipset:trap except src ipset:whitelist

Example: ipuntrap
ipuntrap4 src trap inface eth0 src ipset:trap proto tcp dport 80 log "UNTRAPPED HTTP"

Example: a knock

68

The user will be able to knock at tcp/12345
iptrap4 src knock1 30 inface eth0 proto tcp dport 12345 log "KNOCK STEP 1"
in 30 seconds knock at tcp/23456
iptrap4 src knock2 60 inface eth0 proto tcp dport 23456 src ipset:knock1 log "KNOCK STEP 2"
in 60 seconds knock at tcp/34566
iptrap4 src knock3 90 inface eth0 proto tcp dport 34567 src ipset:knock2 log "KNOCK STEP 3"
#
and in 90 seconds ssh
interface ...

server ssh accept src ipset:knock3

6.15.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

69

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.16 firehol-mac(5)

6.16.1 NAME

firehol-mac - ensure source IP and source MAC address match

6.16.2 SYNOPSIS

mac IP macaddr

6.16.3 DESCRIPTION

Any mac commands will affect all traffic destined for the firewall host, or to be
forwarded by the host. They must be declared before the first router or interface.

Note
There is also a mac parameter which allows matching MAC addresses
within individual rules (see firehol-params(5)).

The mac helper command DROPs traffic from the IP address that was not sent
using the macaddr specified.

When packets are dropped, a log is produced with the label “MAC MISSMATCH”
(sic.). mac obeys the default log limits (see LOGGING in firehol-params(5)).

Note
This command restricts an IP to a particular MAC address. The
same MAC address is permitted send traffic with a different IP.

6.16.4 EXAMPLES

mac 192.0.2.1 00:01:01:00:00:e6
mac 198.51.100.1 00:01:01:02:aa:e8

70

6.16.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-params(5) - optional rule parameters
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

71

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.17 firehol-mark(5)

6.17.1 NAME

firehol-mark - mark traffic for traffic shaping tools

6.17.2 SYNOPSIS

Warning - this manual page is out of date for nightly build/v3 behaviour

mark value chain rule-params

6.17.3 DESCRIPTION

The mark helper command sets a mark on packets that can be matched by traffic
shaping tools for controlling the traffic.

Note
To set a mark on whole connections, see firehol-connmark(5). There is
also a mark parameter which allows matching marks within individual
rules (see firehol-params(5)).

The value is the mark value to set (a 32 bit integer).

The chain will be used to find traffic to mark. It can be any of the iptables(8)
built in chains belonging to the mangle table. The chain names are: INPUT,
FORWARD, OUTPUT, PREROUTING and POSTROUTING. The names are
case-sensitive.

The rule-params define a set of rule parameters to match the traffic that is to be
marked within the chosen chain. See firehol-params(5) for more details.

Any mark commands will affect all traffic matched. They must be declared
before the first router or interface.

Note
If you want to do policy based routing based on iptables(8) marks,
you will need to disable the Root Path Filtering on the interfaces
involved (rp_filter in sysctl).

72

6.17.4 EXAMPLES

mark with 1, packets sent by the local machine
mark 1 OUTPUT

mark with 2, packets routed by the local machine
mark 2 FORWARD

mark with 3, packets routed by the local machine, sent from
192.0.2.2 destined for port TCP/25 of 198.51.100.1
mark 3 FORWARD proto tcp dport 25 dst 198.51.100.1 src 192.0.2.2

6.17.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-params(5) - optional rule parameters
• firehol-connmark(5) - set a stateful mark on a connection
• iptables(8) - administration tool for IPv4 firewalls
• ip6tables(8) - administration tool for IPv6 firewalls
• ip(8) - show / manipulate routing, devices, policy routing and tunnels
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation
• Linux Advanced Routing & Traffic Control HOWTO

73

http://ipset.netfilter.org/iptables.man.html
http://ipset.netfilter.org/ip6tables.man.html
http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/
http://lartc.org/howto/

6.18 firehol-masquerade(5)

6.18.1 NAME

firehol-masquerade - set up masquerading (NAT) on an interface

6.18.2 SYNOPSIS

masquerade real-interface rule-params

masquerade [reverse] rule-params

6.18.3 DESCRIPTION

The masquerade helper command sets up masquerading on the output of a real
network interface (as opposed to a FireHOL interface definition).

If a real-interface is specified the command should be used before any interface
or router definitions. Multiple values can be given separated by whitespace, so
long as they are enclosed in quotes.

If used within an interface definition the definition’s real-interface will be used.

If used within a router definition the definition’s outface(s) will be used, if
specified. If the reverse option is given, then the definition’s inface(s) will be
used, if specified.

Unlike most commands, masquerade does not inherit its parent definition’s
rule-params, it only honours its own. The inface and outface parameters
should not be used (iptables(8) does not support inface in the POSTROUTING
chain and outface will be overwritten by FireHOL using the rules above).

Note
The masquerade always applies to the output of the chosen network
interfaces.
FIREHOL_NAT will be turned on automatically (see firehol-
defaults.conf(5)) and FireHOL will enable packet-forwarding in the
kernel.

74

6.18.4 MASQUERADING AND SNAT

Masquerading is a special form of Source NAT (SNAT) that changes the source
of requests when they go out and replaces their original source when they come
in. This way a Linux host can become an Internet router for a LAN of clients
having unroutable IP addresses. Masquerading takes care to re-map IP addresses
and ports as required.

Masquerading is expensive compare to SNAT because it checks the IP address
of the outgoing interface every time for every packet. If your host has a static
IP address you should generally prefer SNAT.

6.18.5 EXAMPLES

Before any interface or router
masquerade eth0 src 192.0.2.0/24 dst not 192.0.2.0/24

In an interface definition to masquerade the output of its real-interface
masquerade

In a router definition to masquerade the output of its outface
masquerade

In a router definition to masquerade the output of its inface
masquerade reverse

6.18.6 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• firehol-params(5) - optional rule parameters
• firehol-nat(5) - nat, snat, dnat, redirect config helpers
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

75

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.19 firehol-modifiers(5)

6.19.1 NAME

firehol-modifiers - select IPv4 or IPv6 mode

6.19.2 SYNOPSIS

ipv4 definition-or-command argument. . .

ipv6 definition-or-command argument. . .

6.19.3 DESCRIPTION

Without a modifier, interface and router definitions and commands that come
before either will be applied to both IPv4 and IPV6. Commands within an
interface or router assume the same behaviour as the enclosing definition.

When preceded by a modifier, the command or definition can be made to apply
to IPv4 or IPv6 only. Note that you cannot create an IPv4 only command within
and IPv6 interface or vice-versa.

Examples:

interface eth0 myboth src4 192.0.2.0/24 src6 2001:DB8::/24
ipv4 server http accept
ipv6 server http accept

ipv4 interface eth0 my4only src 192.0.2.0/24
server http accept

ipv6 interface eth0 my6only src 2001:DB8::/24
server http accept

Many definitions and commands have explicitly named variants (such as router4,
router6, router46) which can be used as shorthand.

76

6.19.4 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• firehol-policy(5) - policy command
• firehol-protection(5) - protection command
• firehol-server(5) - server, route commands
• firehol-client(5) - client command
• firehol-group(5) - group command
• firehol-iptables(5) - iptables helper
• firehol-masquerade(5) - masquerade helper
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

77

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.20 firehol-nat(5)

6.20.1 NAME

firehol-nat - set up NAT and port redirections

6.20.2 SYNOPSIS

{ nat to-destination | dnat [to] } ipaddr [:port] [random] [persistent] [id id] [at
chain] [rule-params]

{ nat to-source | snat [to] } ipaddr [:port] [random] [persistent] [id id] [at chain]
[rule-params]

{ nat redirect-to | redirect [to] } port[-range] [random] [id id] [at chain] [rule-
params]

6.20.3 DESCRIPTION

Destination NAT is provided by nat to-destination and its synonym dnat.

Source NAT is provided by nat to-source and its synonym snat.

Redirection to a port on the local host is provided by nat redirect-to and its
synonym redirect.

The port part of the new address is optional with SNAT and DNAT; if not
specified it will not be changed.

When you apply NAT to a packet, the Linux kernel will track the changes it
makes, so that when it sees replies the transformation will be applied in the
opposite direction. For instance if you changed the destination port of a packet
from 80 to 8080, when a reply comes back, its source is set as 80. This means
the original sender is not aware a transformation is happening.

This means that NAT is only applied on the first packet of each connection (the
nat FireHOL helper always appends state NEW to NAT statements).

The NAT helper can be used to setup load balancing. Check the section
BALANCING below.

Note
The rule-params are used only to determine the traffic that will be
matched for NAT in these commands, not to permit traffic to flow.

78

Applying NAT does not automatically create rules to allow the traffic
to pass. You will still need to include client or server entries in an
interface or router to allow the traffic.
When using dnat or redirect, the transformation is in the PRE-
ROUTING chain of the NAT table and happens before normal rules
are matched, so your client or server rule should match the “modified”
traffic.
When using snat, the transformation is in the POSTROUTING
chain of the NAT table and happens after normal rules are matched,
so your client or server rule should match the “unmodified” traffic.
See the netfilter flow diagram if you would like to see how network
packets are processed by the kernel in detail.

The at keyword allows setting a different chain to attach the rules. For dnat
and redirect the default is PREROUTING, but OUTPUT is also supported.
For snat the default is POSTROUTING, but INPUT is also supported.

random will randomise the port mapping involved, to ensure the ports used are
not predictable.

persistent is used when the statement is given alternatives (i.e. many desti-
nation servers for dnat, many source IPs for snat, many ports for redirect).
It will attempt to keep each client on the same nat map. See below for more
information about persistence.

The nat helper takes one of the following sub-commands:

to-destination ipaddr[:port] Defines a Destination NAT (DNAT). Commonly
thought of as port-forwarding (where packets destined for the firewall with
a given port and protocol are sent to a different IP address and possibly
port), DNAT is much more flexible in that any number of parameters can
be matched before the destination information is rewritten.
ipaddr [:port] is the destination address to be set in packets matching
rule-params.
If no rules are given, all forwarded traffic will be matched. outface should
not be used in DNAT since the information is not available at the time
the decision is made.
ipaddr [:port] accepts any --to-destination values that iptables(8) ac-
cepts. Run iptables -j DNAT --help for more information. Multiple
ipaddr [:port] may be specified by separating with spaces and enclosing with
quotes.

to-source ipaddr[:port] Defines a Source NAT (SNAT). SNAT is similar to
masquerading but is more efficient for static IP addresses. You can use it
to give a public IP address to a host which does not have one behind the
firewall. See also firehol-masquerade(5).

79

http://upload.wikimedia.org/wikipedia/commons/3/37/Netfilter-packet-flow.svg

ipaddr [:port] is the source address to be set in packets matching rule-params.
If no rules are given, all forwarded traffic will be matched. inface should
not be used in SNAT since the information is not available at the time the
decision is made.
ipaddr [:port] accepts any --to-source values that iptables(8) accepts. Run
iptables -j SNAT --help for more information. Multiple ipaddr [:port]
may be specified by separating with spaces and enclosing with quotes.

redirect-to port[-range] Redirect matching traffic to the local machine. This
is typically useful if you want to intercept some traffic and process it on
the local machine.
port[-range] is the port range (from-to) or single port that packets matching
rule-params will be redirected to.
If no rules are given, all forwarded traffic will be matched. outface should
not be used in REDIRECT since the information is not available at the
time the decision is made.

6.20.4 BALANCING

NAT can balance multiple servers (or IPs in case of snat) when a range is
specified. This is handled by the kernel.

Example:

dnat4 to 10.0.0.1-10.0.0.10 persistent proto tcp dst 1.1.1.1 dport 80

In the above example, the Linux kernel will give a persistent server to all the
sockets of any single client.

FireHOL can also setup balancing using a round-robin or weighted average
distribution of requests. However persistent cannot be used (the Linux kernel
applies persistence on a single NAT statement).

6.20.4.1 Round Robin distribution To enable round robin distribution,
give multiple to values, space separated and enclosed in quotes, or comma
separated.

Example:

dnat4 to 10.0.0.1,10.0.0.2,10.0.0.3 proto tcp dst 1.1.1.1 port 80
or
dnat4 to "10.0.0.1 10.0.0.2 10.0.0.3" proto tcp dst 1.1.1.1 port 80

80

Ports can also be given per IP:

dnat4 to 10.0.0.1:70,10.0.0.2:80,10.0.0.3:90 proto tcp dst 1.1.1.1 port 80
or
dnat4 to "10.0.0.1:70 10.0.0.2:80 10.0.0.3:90" proto tcp dst 1.1.1.1 port 80

6.20.4.2 Weighted distribution To enable weighted distribution, append
a slash with the weight requested for each entry.

FireHOL adds all the weights given and calculates the percentage of traffic each
entry should receive.

Example:

dnat4 to 10.0.0.1/30,10.0.0.2/30,10.0.0.3/40 proto tcp dst 1.1.1.1 port 80
or
dnat4 to "10.0.0.1/30 10.0.0.2/30 10.0.0.3/40" proto tcp dst 1.1.1.1 port 80
or
dnat4 to 10.0.0.1:70/30,10.0.0.2:80/30,10.0.0.3:90/40 proto tcp dst 1.1.1.1 port 80
or
dnat4 to "10.0.0.1:70/30 10.0.0.2:80/30 10.0.0.3:90/40" proto tcp dst 1.1.1.1 port 80

6.20.4.3 PERSISTENCE

The kernel supports persistence only if the NAT alternatives are contiguous
(i.e. dnat to A-B, snat to A-B, redirect to 1000:1010, etc). If they are contiguous,
persistence is left at the kernel. FireHOL does nothing.

If the alternatives are not contiguous, FireHOL will use the recent iptables
module to apply persistence itself.

FireHOL supports mixed mode persistence. For example, you can have something
like this:

dnat to A-B/70,C-D/20,F/10 persistence id mybalancer

The above is a weighted distribution of persistence. Group A-B will get 70%,
C-D 20% and server F 10%.

Using the above, FireHOL will apply its persistence to pick one of the groups
A-B, or C-D, or F. Once the group has been picked by FireHOL, the kernel
will apply persistence within the group, to pick the server that will handle the
request.

The FireHOL persistence works like this:

1. A packet is received that should be NATed

81

2. A lookup is made using the recent module to find if it has been seen before.
The source IP of packet is looked up.

3. If it has been seen before, the connection is mapped the same way the last
time was mapped. The recent module is updated too.

4. If it has not been seen before, the connection is mapped using the distribu-
tion method specified. The recent module is updated too, to be ready for
the next connection.

The recent module has a few limitations:

1. It has lookup tables. We need one lookup table for each member of of the
NAT. FireHOL uses the id parameter and the definition of each alternative
in the NAT statement to form a name for the lookup table. These lookup
tables are persistent to firewall restarts, this is why FireHOL requires from
you to set an id.

2. It can keep entries in its lookup tables for a given time. Fire-
HOL sets this to 3600 seconds. You can control it by setting
FIREHOL_NAT_PERSISTENCE_SECONDS.

3. It has a limit on the number of entries in the lookup tables. FireHOL
cannot set this. This is kernel module option. The default is 200 entries.

Check this:

~~ #modinfo xt_recent filename: /lib/modules/4.1.12-gentoo/kernel/net/netfilter/xt_recent.ko
alias: ip6t_recent alias: ipt_recent license: GPL description: Xtables: “recently-
seen” host matching author: Jan Engelhardt jengelh@medozas.de author: Patrick
McHardy kaber@trash.net depends: x_tables intree: Y vermagic: 4.1.12-gentoo
SMP preempt mod_unload modversions parm: ip_list_tot:number of IPs to
remember per list (uint) parm: ip_list_hash_size:size of hash table used to look
up IPs (uint) parm: ip_list_perms:permissions on /proc/net/xt_recent/* files
(uint) parm: ip_list_uid:default owner of /proc/net/xt_recent/* files (uint)
parm: ip_list_gid:default owning group of /proc/net/xt_recent/* files (uint)
parm: ip_pkt_list_tot:number of packets per IP address to remember (max.
255) (uint) ~~

You have to consult your distribution documentation to set these.
You can find their current values by examining files found in
`/sys/module/xt_recent/parameters/` Unfortunately, these files
are not writable, so to change parameters you have unload and
reload the module (i.e. apply a firewall that does not use the
recent module, `rmmod xt_recent`, change the parameter,
re-apply a firewall that uses the *recent* module).

Normaly, you will need a line in `/etc/modprobe.d/netfitler.conf`

82

mailto:jengelh@medozas.de
mailto:kaber@trash.net

like this:

~~~~
options xt_recent ip_list_tot=16384
~~~~

The number 16384 I used is the max number of unique client IPs
I expect to have per hour (`FIREHOL_NAT_PERSISTENCE_SECONDS`)
for this service.

`ip_list_hash_size` is calculated by kernel when the module
is loaded to be bigger and up to twice `ip_list_tot`.

Once you have the balancer running, you can find its lookup tables in
/proc/net/xt_recent/. There you will find files starting with the id parameter,
one file for every alternative of the NAT rule.

6.20.5 EXAMPLES

Port forwarding HTTP
dnat4 to 192.0.2.2 proto tcp dport 80

Port forwarding HTTPS on to a different port internally
dnat4 to 192.0.2.2:4443 proto tcp dport 443

Fix source for traffic leaving the firewall via eth0 with private address
snat4 to 198.51.100.1 outface eth0 src 192.168.0.0/24

Transparent squid (running on the firewall) for some hosts
redirect4 to 8080 inface eth0 src 198.51.100.0/24 proto tcp dport 80

Send to 192.0.2.1
- all traffic arriving at or passing through the firewall
nat4 to-destination 192.0.2.1

Send to 192.0.2.1
- all traffic arriving at or passing through the firewall
- which WAS going to 203.0.113.1
nat4 to-destination 192.0.2.1 dst 203.0.113.1

Send to 192.0.2.1
- TCP traffic arriving at or passing through the firewall

83

- which WAS going to 203.0.113.1
nat4 to-destination 192.0.2.1 proto tcp dst 203.0.113.1

Send to 192.0.2.1
- TCP traffic arriving at or passing through the firewall
- which WAS going to 203.0.113.1, port 25
nat4 to-destination 192.0.2.1 proto tcp dport 25 dst 203.0.113.1

6.20.6 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• firehol-params(5) - optional rule parameters
• firehol-masquerade(5) - masquerade helper
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation
• NAT HOWTO
• netfilter flow diagram

84

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO-6.html
http://upload.wikimedia.org/wikipedia/commons/3/37/Netfilter-packet-flow.svg

6.21 firehol-params(5)

6.21.1 NAME

firehol-params - optional rule parameters

6.21.2 SYNOPSIS

Common

{ src | src4 | src6 } [not] host

{ dst | dst4 | dst6 } [not] host

srctype [not] type

dsttype [not] type

proto [not] protocol

mac [not] macaddr

dscp [not] value class classid

mark [not] id

connmark [not] id

custommark [not] name id

rawmark [not] id

tos [not] id

custom “iptables-options. . . ”

custom-in “iptables-options. . . ”

custom-out “iptables-options. . . ”

Router Only

inface [not] interface

outface [not] interface

physin [not] interface

physout [not] interface

Interface Only

uid [not] user

85

gid [not] group

Logging

connlog “log text”

log “log text” [level loglevel]

loglimit “log text” [level loglevel]

Helpers Only

sport port

dport port

state state

ipset [not] name flags [no-counters] [bytes-lt|bytes-eq|bytes-gt|bytes-not-eq num-
ber] [packets-lt|packets-eq|packets-gt|packets-not-eq number] [options custom-
ipset-options]

limit limit burst

connlimit upto|above limit [mask mask] [saddr|daddr]

hashlimit name upto|above amount/period [burst amount] [mode {sr-
cip|srcport|dstip|dstport},. . .] [srcmask prefix] [dstmask prefix] [htable-size
buckets] [htable-max entries] [htable-expire msec] [htable-gcinterval msec]

6.21.3 DESCRIPTION

Optional rule parameters are accepted by many commands to narrow the match
they make. Not all parameters are accepted by all commands so you should
check the individual commands for exclusions.

All matches are made against the REQUEST. FireHOL automatically sets up
the necessary stateful rules to deal with replies in the reverse direction.

All matches should be true for a statement to be executed. However, many
matches support multiple values. In this case, at least one of the values must
match.

Example:

server smtp accept src 1.1.1.1 dst 2.2.2.2

In the above example all smtp requests coming in from 1.1.1.1 and going out to
smtp server 2.2.2.2 will be matched.

server smtp accept src 1.1.1.1 dst 2.2.2.2,3.3.3.3

86

In the above example all smtp requests coming in from 1.1.1.1 and going out to
either smtp server 2.2.2.2 or 3.3.3.3 will be matched.

Use the keyword not to match any value other than the one(s) specified.

The logging parameters are unusual in that they do not affect the match, they
just cause a log message to be emitted. Therefore, the logging parameters don’t
support the not option.

FireHOL is designed so that if you specify a parameter that is also used internally
by the command then a warning will be issued (and the internal version will be
used).

6.21.4 COMMON

6.21.4.1 src, dst
Use src and dst to define the source and destination IP addresses of the request
respectively. host defines the IP or IPs to be matched.

host can also refer to an ipset, using this syntax: ipset:NAME, where NAME is
the name of the ipset. The ipset has to be of type hash:ip for this match to
work. The source IP or the destination IP will be used for the match, depending
if the ipset is given as src or dst.

IPs and ipsets can be mixed together, like this: src 1.1.1.1,ipset:NAME1,2.2.2.2,ipset:NAME2

Examples:

server4 smtp accept src not 192.0.2.1
server4 smtp accept dst 198.51.100.1
server4 smtp accept src not 192.0.2.1 dst 198.51.100.1
server6 smtp accept src not 2001:DB8:1::/64
server6 smtp accept dst 2001:DB8:2::/64
server6 smtp accept src not 2001:DB8:1::/64 dst 2001:DB8:2::/64

When attempting to create rules for both IPv4 and IPv6 it is generally easier to
use the src4, src6, dst4 and dst6 pairs:

server46 smtp accept src4 192.0.2.1 src6 2001:DB8:1::/64
server46 smtp accept dst4 198.51.100.1 dst6 2001:DB8:2::/64
server46 smtp accept dst4 $d4 dst6 $d6 src4 not $d4 src6 not $s6

To keep the rules sane, if one of the 4/6 pair specifies not, then so must the
other. If you do not want to use both IPv4 and IPv6 addresses, you must specify
the rule as IPv4 or IPv6 only. It is always possible to write a second IPv4 or
IPv6 only rule.

87

6.21.4.2 srctype, dsttype

Use srctype or dsttype to define the source or destination IP address type of
the request. type is the address type category as used in the kernel’s network
stack. It can be one of:

UNSPEC an unspecified address (i.e. 0.0.0.0)

UNICAST a unicast address

LOCAL a local address

BROADCAST a broadcast address

ANYCAST an anycast address

MULTICAST a multicast address

BLACKHOLE a blackhole address

UNREACHABLE an unreachable address

PROHIBIT a prohibited address

THROW; NAT; XRESOLVE undocumented

See iptables(8) or run iptables -m addrtype --help for more information.
Examples:

server smtp accept srctype not "UNREACHABLE PROHIBIT"

6.21.4.3 proto

Use proto to match by protocol. The protocol can be any accepted by iptables(8).

6.21.4.4 mac

Use mac to match by MAC address. The macaddr matches to the “remote”
host. In an interface, “remote” always means the non-local host. In a router,
“remote” refers to the source of requests for servers. It refers to the destination
of requests for clients. Examples:

Only allow pop3 requests to the e6 host
client pop3 accept mac 00:01:01:00:00:e6

Only allow hosts other than e7/e8 to access smtp
server smtp accept mac not "00:01:01:00:00:e7 00:01:01:00:00:e8"

88

6.21.4.5 dscp
Use dscp to match the DSCP field on packets. For details on DSCP values and
classids, see firehol-dscp(5).

server smtp accept dscp not "0x20 0x30"
server smtp accept dscp not class "BE EF"

6.21.4.6 mark
Use mark to match marks set on packets. For details on mark ids, see firehol-
mark(5).

server smtp accept mark not "20 55"

6.21.4.7 tos
Use tos to match the TOS field on packets. For details on TOS ids, see
firehol-tos(5).

server smtp accept tos not "Maximize-Throughput 0x10"

6.21.4.8 custom
Use custom to pass arguments directly to iptables(8). All of the parameters
must be in a single quoted string. To pass an option to iptables(8) that itself
contains a space you need to quote strings in the usual bash(1) manner. For
example:

server smtp accept custom "--some-option some-value"
server smtp accept custom "--some-option 'some-value second-value'"

6.21.5 ROUTER ONLY

6.21.5.1 inface, outface
Use inface and outface to define the interface via which a request is received
and forwarded respectively. Use the same format as firehol-interface(5). Exam-
ples:

server smtp accept inface not eth0
server smtp accept inface not "eth0 eth1"
server smtp accept inface eth0 outface eth1

89

6.21.5.2 physin, physout

Use physin and physout to define the physical interface via which a request is
received or send in cases where the inface or outface is known to be a virtual
interface; e.g. a bridge. Use the same format as firehol-interface(5). Examples:

server smtp accept physin not eth0

6.21.6 INTERFACE ONLY

These parameters match information related to information gathered from the
local host. They apply only to outgoing packets and are silently ignored for
incoming requests and requests that will be forwarded.

Note
The Linux kernel infrastructure to match PID/SID and executable
names with pid, sid and cmd has been removed so these options can
no longer be used.

6.21.6.1 uid

Use uid to match the operating system user sending the traffic. The user is a
username, uid number or a quoted list of the two.

For example, to limit which users can access POP3 and IMAP by preventing
replies for certain users from being sent:

client "pop3 imap" accept user not "user1 user2 user3"

Similarly, this will allow all requests to reach the server but prevent replies unless
the web server is running as apache:

server http accept user apache

6.21.6.2 gid

Use gid to match the operating system group sending the traffic. The group is
a group name, gid number or a quoted list of the two.

90

6.21.7 LOGGING

6.21.7.1 connlog

Use connlog to log only the first packet of a connection.

6.21.7.2 log, loglimit

Use log or loglimit to log matching packets to syslog. Unlike iptables(8) logging,
this is not an action: FireHOL will produce multiple iptables(8) commands to
accomplish both the action for the rule and the logging.

Logging is controlled using the FIREHOL_LOG_OPTIONS and FIRE-
HOL_LOG_LEVEL environment variables - see firehol-defaults.conf(5).
loglimit additionally honours the FIREHOL_LOG_FREQUENCY and
FIREHOL_LOG_BURST variables.

Specifying level (which takes the same values as FIREHOL_LOG_LEVEL)
allows you to override the log level for a single rule.

6.21.8 HELPERS ONLY PARAMETERS

6.21.8.1 dport, sport

FireHOL also provides dport, sport and limit which are used internally and
rarely needed within configuration files.

dport and sport require an argument port which can be a name, number, range
(FROM:TO) or a quoted list of ports.

For dport port specifies the destination port of a request and can be useful when
matching traffic to helper commands (such as nat) where there is no implicit
port.

For sport port specifies the source port of a request and can be useful when
matching traffic to helper commands (such as nat) where there is no implicit
port.

6.21.8.2 limit

limit requires the arguments frequency and burst and will limit the matching
of traffic in both directions.

91

6.21.8.3 connlimit

connlimit matches on the number of connections per IP. It has been added to
FireHOL since v3.

saddr matches on source IP. daddr matches on destination IP. mask groups IPs
with the mask given upto matches when the number of connections is up to the
given limit above matches when the number of connections above to the given
limit

The number of connections counted are system wide, not service specific. For
example for saddr, you cannot connlimit 2 connections for SSH and 4 for SMTP.
If you connlimit 2 connections for SSH, then the first 2 connections of a client
can be SSH. If a client has already 2 connections to another service, the client
will not be able to connect to SSH.

So, connlimit can safely be used:

• with daddr to limit the connections a server can accept
• with saddr to limit the total connections per client to all services.

6.21.8.4 hashlimit

hashlimit has been added to FireHOL since v3.

hashlimit hashlimit uses hash buckets to express a rate limiting match (like the
limit match) for a group of connections using a single iptables rule. Grouping
can be done per-hostgroup (source and/or destination address) and/or per-port.
It gives you the ability to express “N packets per time quantum per group” or
“N bytes per seconds” (see below for some examples).

A hash limit type (upto, above) and name are required.

name The name for the /proc/net/ipt_hashlimit/name entry.

upto amount[/second|/minute|/hour|/day] Match if the rate is below or equal
to amount/quantum. It is specified either as a number, with an optional time
quantum suffix (the default is 3/hour), or as amountb/second (number of bytes
per second).

above amount[/second|/minute|/hour|/day] Match if the rate is above
amount/quantum.

burst amount Maximum initial number of packets to match: this number gets
recharged by one every time the limit specified above is not reached, up to this
number; the default is 5. When byte-based rate matching is requested, this
option specifies the amount of bytes that can exceed the given rate. This option
should be used with caution - if the entry expires, the burst value is reset too.

mode {srcip|srcport|dstip|dstport},. . . A comma-separated list of objects to take
into consideration. If no mode option is given, srcip,dstport is assumed.

92

srcmask prefix When –hashlimit-mode srcip is used, all source addresses encoun-
tered will be grouped according to the given prefix length and the so-created
subnet will be subject to hashlimit. prefix must be between (inclusive) 0 and 32.
Note that srcmask 0 is basically doing the same thing as not specifying srcip
for mode, but is technically more expensive.

dstmask prefix Like srcmask, but for destination addresses.

htable-size buckets The number of buckets of the hash table

htable-max entries Maximum entries in the hash.

htable-expire msec After how many milliseconds do hash entries expire.

htable-gcinterval msec How many milliseconds between garbage collection
intervals.

Examples:

matching on source host: “1000 packets per second for every host in
192.168.0.0/16”

src 192.168.0.0/16 hashlimit mylimit mode srcip upto 1000/sec

matching on source port: “100 packets per second for every service of 192.168.1.1”

src 192.168.1.1 hashlimit mylimit mode srcport upto 100/sec

matching on subnet: “10000 packets per minute for every /28 subnet (groups of
8 addresses) in 10.0.0.0/8”

src 10.0.0.8 hashlimit mylimit mask 28 upto 10000/min

matching bytes per second: “flows exceeding 512kbyte/s”

hashlimit mylimit mode srcip,dstip,srcport,dstport above 512kb/s

matching bytes per second: “hosts that exceed 512kbyte/s, but permit up to
1Megabytes without matching”

hashlimit mylimit mode dstip above 512kb/s burst 1mb

93

6.21.9 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-server(5) - server, route commands
• firehol-client(5) - client command
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• firehol-mark(5) - mark config helper
• firehol-tos(5) - tos config helper
• firehol-dscp(5) - dscp config helper
• firehol-defaults.conf(5) - control variables
• iptables(8) - administration tool for IPv4 firewalls
• ip6tables(8) - administration tool for IPv6 firewalls
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

94

http://ipset.netfilter.org/iptables.man.html
http://ipset.netfilter.org/ip6tables.man.html
http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.22 firehol-policy(5)

6.22.1 NAME

firehol-policy - set default action for an interface or router

6.22.2 SYNOPSIS

policy action

6.22.3 DESCRIPTION

The policy subcommand defines the default policy for an interface or router.

The action can be any of the actions listed in firehol-actions(5).

Note
Change the default policy of a router only if you understand clearly
what will be matched by the router statement whose policy is being
changed.
It is common to define overlapping router definitions. Changing the
policy to anything other than the default return may cause strange
results for your configuration.

Warning
Do not set a policy to accept unless you fully trust all hosts that
can reach the interface. FireHOL CANNOT be used to create valid
“accept by default” firewalls.

6.22.4 EXAMPLE

interface eth0 intranet src 192.0.2.0/24
I trust this interface absolutely
policy accept

95

6.22.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

96

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.23 firehol-protection(5)

6.23.1 NAME

firehol-protection - add extra protections to a definition

6.23.2 SYNOPSIS

protection [reverse] strong [requests/period [burst]]

protection [reverse] flood-protection-type [requests/period [burst]]

protection [reverse] { bad-packets | packet-protection-type }

protection [reverse] connlimit connections [mask prefix]

protection [reverse] connrate rate [burst amount] [srcmask prefix] [htable-size
buckets] [htable-max entries] [htable-expire msec] [htable-gcinterval msec]

6.23.3 DESCRIPTION

The protection subcommand sets protection rules on an interface or router.

Flood protections honour the values requests/period and burst. They are used to
limit the rate of certain types of traffic.

The default rate FireHOL uses is 100 operations per second with a burst of 50.
Run iptables -m limit --help for more information.

The protection type strong will switch on all protections (both packet and flood
protections) except all-floods. It has aliases full and all.

The protection type bad-packets will switch on all packet protections but not
flood protections.

You can specify multiple protection types by using multiple protection com-
mands or by using a single command and enclosing the types in quotes.

Note
On a router, protections are normally set up on inface.
The reverse option will set up the protections on outface. You must
use it as the first keyword.

97

6.23.4 PACKET PROTECTION TYPES

bad-packets: Drops all the bad packets detected by these rules.

invalid Drops all incoming invalid packets, as detected INVALID by the con-
nection tracker.
See also FIREHOL_DROP_INVALID in firehol-defaults.conf(5) which
allows setting this function globally.

fragments Drops all packet fragments.
This rule will probably never match anything since iptables(8) reconstructs
all packets automatically before the firewall rules are processed whenever
connection tracking is running.

new-tcp-w/o-syn Drops all TCP packets that initiate a socket but have not
got the SYN flag set.

malformed-xmas Drops all TCP packets that have all TCP flags set.

malformed-null Drops all TCP packets that have all TCP flags unset.

malformed-bad Drops all TCP packets that have illegal combinations of TCP
flags set.

6.23.4.1 EXAMPLES

protection bad-packets

6.23.5 FLOOD PROTECTION TYPES

icmp-floods [requests/period [burst]] Allows only a certain amount of
ICMP echo requests.

syn-floods [requests/period [burst]] Allows only a certain amount of new
TCP connections.
Be careful to not set the rate too low as the rule is applied to all connections
regardless of their final result (rejected, dropped, established, etc).

all-floods [requests/period [burst]] Allows only a certain amount of new
connections.
Be careful to not set the rate too low as the rule is applied to all connections
regardless of their final result (rejected, dropped, established, etc).

98

6.23.5.1 EXAMPLES

protection all-floods 90/sec 40

6.23.6 CLIENT LIMITING TYPES

These protections were added in v3.

These protections are used to limit the connections client make, per interface
or router.

They support appending optional rule parameters to limit their scope to
certain clients only.

protection [reverse] connlimit connections [mask prefix] Allow only a
number of connections per client (implemented with connlimit with fixed
type=saddr).

protection [reverse] connrate rate [burst amount] [srcmask prefix] [htable-size buckets] [htable-max entries] [htable-expire msec] [htable-gcinterval msec]
Allow up to a rate of new connections per client (implemented with
hashlimit with fixed type=upto and mode=srcip).

6.23.6.1 EXAMPLES
Limit the number of concurrent connections to 10 per client

protection connlimit 10 mask 32

Limit the number of concurrent connections to 100 per client class-C and also
limit it to 5 for 1.2.3.4

protection connlimit 100 mask 24
protection connlimit 5 src 1.2.3.4

In the last example above, if you want to give client 1.2.3.4 more connections
than all others, you should exclude it from the first connlimit statement, like
this:

protection connlimit 100 mask 24 src not 1.2.3.4
protection connlimit 200 src 1.2.3.4

Limit all clients to 10 concurrect connections and 60 connections/minute

protection connlimit 10
protection connrate 60/minute

99

6.23.7 KNOWN ISSUES

When using multiple types in a single command, if the quotes are forgotten,
incorrect rules will be generated without warning.

When using multiple types in a single command, FireHOL will silently ignore
any types that come after a group type (bad-packets, strong and its aliases).
Only use group types on their own line.

6.23.8 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

100

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.24 firehol-proxy(5)

6.24.1 NAME

firehol-proxy - set up a transparent TCP, HTTP or squid proxy

6.24.2 SYNOPSIS

transparent_proxy service port user rule-params

transparent_squid port user rule-params

6.24.3 DESCRIPTION

The transparent_proxy helper command sets up transparent caching for TCP
traffic.

The transparent_squid helper command sets up the special case for HTTP
traffic with service implicitly set to 80.

Note
The proxy application must be running on the firewall host at port
port with the credentials of the local user user (which may be a
space-delimited list enclosed in quotes) serving requests appropriate
to the TCP port service.

The rule-params define a set of rule parameters to define the traffic that is to be
proxied. See firehol-params(5) for more details.

For traffic destined for the firewall host or passing through the firewall, do not
use the outface parameter because the rules are applied before the routing
decision and so the outgoing interface will not be known.

An empty user string (“”) disables caching of locally-generated traffic. Otherwise,
traffic starting from the firewall is captured, except that traffic generated by the
local user(s) user. The inface, outface and src rule-params are all ignored for
locally-generated traffic.

101

6.24.4 EXAMPLES

transparent_proxy 80 3128 squid inface eth0 src 192.0.2.0/24
transparent_squid 3128 squid inface eth0 src 192.0.2.0/24

transparent_proxy "80 3128 8080" 3128 "squid privoxy root bin" \
inface not "ppp+ ipsec+" dst not "a.not.proxied.server"

transparent_squid "80 3128 8080" "squid privoxy root bin" \
inface not "ppp+ ipsec+" dst not "non.proxied.server"

6.24.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• firehol-params(5) - optional rule parameters
• firehol-nat(5) - nat, snat, dnat, redirect config helpers
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

102

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.25 firehol-router(5)

6.25.1 NAME

firehol-router - create a router definition

6.25.2 SYNOPSIS

{ router | router46 } name rule-params

router4 name rule-params

router6 name rule-params

6.25.3 DESCRIPTION

A router definition consists of a set of rules for traffic passing through the host
running the firewall.

The default policy for router definitions is RETURN, meaning packets are not
dropped by any particular router. Packets not matched by any router are
dropped at the end of the firewall.

The behaviour of the defined router is controlled by adding subcommands from
those listed in ROUTER SUBCOMMANDS.

Note
Writing router4 is equivalent to writing ipv4 router and ensures
the defined router is created only in the IPv4 firewall along with any
rules within it.
Writing router6 is equivalent to writing ipv6 router and ensures
the defined router is created only in the IPv6 firewall along with any
rules within it.
Writing router46 is equivalent to writing both router and ensures
the defined router is created in both the IPv4 and IPv6 firewalls.
Any rules within it will also be applied to both, unless they specify
otherwise.

103

6.25.4 PARAMETERS

name This is a name for this router. You should use short names (10 characters
maximum) without spaces or other symbols.
A name should be unique for all FireHOL interface and router definitions.

rule-params The set of rule parameters to further restrict the traffic that is
matched to this router.
See firehol-params(5) for information on the parameters that can be used.
Some examples:

router mylan inface ppp+ outface eth0 src not ${UNROUTABLE_IPS}

router myrouter

See firehol.conf(5) for an explanation of ${UNROUTABLE_IPS}.

6.25.5 WORKING WITH ROUTERS

Routers create stateful iptables(8) rules which match traffic in both directions.

To match some client or server traffic, the input/output interface or
source/destination of the request must be specified. All inface/outface and
src/dst firehol-params(5) can be given on the router statement (in which case
they will be applied to all subcommands for the router) or just within the
subcommands of the router.

For example, to define a router which matches requests from any PPP interface
and destined for eth0, and on this allowing HTTP servers (on eth0) to be accessed
by clients (from PPP) and SMTP clients (from eth0) to access any servers (on
PPP):

router mylan inface ppp+ outface eth0
server http accept
client smtp accept

Note
The client subcommand reverses any optional rule parameters
passed to the router, in this case the inface and outface.

104

Equivalently, to define a router which matches all forwarded traffic and within
the the router allow HTTP servers on eth0 to be accessible to PPP and any
SMTP servers on PPP to be accessible from eth0:

router mylan
server http accept inface ppp+ outface eth0
server smtp accept inface eth0 outface ppp

Note
In this instance two server subcommands are used since there are
no parameters on the router to reverse. Avoid the use of the client
subcommand in routers unless the inputs and outputs are defined as
part of the router.

Any number of routers can be defined and the traffic they match can overlap.
Since the default policy is RETURN, any traffic that is not matched by any
rules in one will proceed to the next, in order, until none are left.

6.25.6 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-params(5) - optional rule parameters
• firehol-modifiers(5) - ipv4/ipv6 selection
• firehol-interface(5) - interface definition
• firehol-iptables(5) - iptables helper
• firehol-masquerade(5) - masquerade helper
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

6.25.6.1 Router Subcommands

• firehol-policy(5) - policy command
• firehol-protection(5) - protection command
• firehol-server(5) - server, route commands
• firehol-client(5) - client command
• firehol-group(5) - group command
• firehol-tcpmss(5) - tcpmss helper

105

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.26 firehol-server(5)

6.26.1 NAME

firehol-server - server, route commands: accept requests to a service

6.26.2 SYNOPSIS

{ server | server46 } service action rule-params

server4 service action rule-params

server6 service action rule-params

{ route | route46 } service action rule-params

route4 service action rule-params

route6 service action rule-params

6.26.3 DESCRIPTION

The server subcommand defines a server of a service on an interface or
router. Any rule-params given to a parent interface or router are inherited by
the server.

For FireHOL a server is the destination of a request. Even though this is more
complex for some multi-socket services, to FireHOL a server always accepts
requests.

The route subcommand is an alias for server which may only be used in routers.

The service parameter is one of the supported service names from firehol-
services(5). Multiple services may be specified, space delimited in quotes.

The action can be any of the actions listed in firehol-actions(5).

The rule-params define a set of rule parameters to further restrict the traffic
that is matched to this service. See firehol-params(5) for more details.

Note
Writing server4 is equivalent to writing ipv4 server and ensures
this subcommand is applied only in the IPv4 firewall rules.

106

Writing server6 is equivalent to writing ipv6 server and ensures
this subcommand is applied only in the IPv6 firewall rules.
Writing server46 is equivalent to writing both server and ensures
this subcommand is applied in both the IPv4 and IPv6 firewall rules;
it cannot be used as part an interface or router that is IPv4 or IPv6
only.
The default server inherits its behaviour from the enclosing interface
or router.
The same rules apply to the variations of route.

6.26.4 EXAMPLES

server smtp accept

server "smtp pop3" accept

server smtp accept src 192.0.2.1

server smtp accept log "mail packet" src 192.0.2.1

6.26.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-modifiers(5) - ipv4/ipv6 selection
• firehol-services(5) - services list
• firehol-actions(5) - actions for rules
• firehol-params(5) - optional rule parameters
• firehol-client(5) - client subcommand
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

107

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.27 firehol-services(5)

6.27.1 NAME

firehol-services - FireHOL services list

6.27.2 SYNOPSIS

AH all amanda any anystateless apcupsd apcupsdnis aptproxy asterisk

cups custom cvspserver

darkstat daytime dcc dcpp dhcp dhcprelay dhcpv6 dict distcc dns

echo emule eserver ESP

finger ftp

gift giftui gkrellmd GRE

h323 heartbeat http httpalt https hylafax

iax iax2 ICMP icmp ICMPV6 icmpv6 icp ident imap imaps ipsecnatt ipv6error
ipv6mld ipv6neigh ipv6router irc isakmp

jabber jabberd

l2tp ldap ldaps lpd

microsoft_ds mms msn msnp ms_ds multicast mysql

netbackup netbios_dgm netbios_ns netbios_ssn nfs nis nntp nntps nrpe ntp
nut nxserver

openvpn oracle OSPF

ping pop3 pop3s portmap postgres pptp privoxy

radius radiusold radiusoldproxy radiusproxy rdp rndc rsync rtp

samba sane sip smtp smtps snmp snmptrap socks squid ssh stun submission
sunrpc swat syslog

telnet tftp time timestamp tomcat

upnp uucp

vmware vmwareauth vmwareweb vnc

webcache webmin whois

xbox xdmcp

108

6.27.3 DESCRIPTION

6.27.3.1 service: AH

IPSec Authentication Header (AH) Example:

server AH accept

Service Type:

• simple

Server Ports:

• 51/any

Client Ports:

• any

Links

• Wikipedia

Notes

For more information see this Archive of the FreeS/WAN docu-
mentation and RFC 2402.

6.27.3.2 service: all

Match all traffic Example:

server all accept

Service Type:

• simple

Server Ports:

• all

Client Ports:

109

http://en.wikipedia.org/wiki/IPsec#Authentication_Header
http://web.archive.org/web/20100918134143/http://www.freeswan.org/freeswan_trees/freeswan-1.99/doc/ipsec.html#AH.ipsec
http://web.archive.org/web/20100918134143/http://www.freeswan.org/freeswan_trees/freeswan-1.99/doc/ipsec.html#AH.ipsec
http://www.ietf.org/rfc/rfc2402.txt

• all

Netfilter Modules

• nf_conntrack_ftp CONFIG_NF_CONNTRACK_FTP
• nf_conntrack_irc CONFIG_NF_CONNTRACK_IRC
• nf_conntrack_sip CONFIG_NF_CONNTRACK_SIP
• nf_conntrack_pptp CONFIG_NF_CONNTRACK_PPTP
• nf_conntrack_proto_gre CONFIG_NF_CT_PROTO_GRE

Netfilter NAT Modules

• nf_nat_ftp CONFIG_NF_NAT_FTP
• nf_nat_irc CONFIG_NF_NAT_IRC
• nf_nat_sip CONFIG_NF_NAT_SIP
• nf_nat_pptp CONFIG_NF_NAT_PPTP
• nf_nat_proto_gre CONFIG_NF_NAT_PROTO_GRE

Notes

Matches all traffic (all protocols, ports, etc.). Note that to
provide “connections in one direction with replies” semantics,
the kernel connection tracker is still used: this will therefore
still not match packets if they are not understood as part of
a connection (e.g. some ICMPv6 packets, requests and replies
taking different routes, complex protocols with no helper loaded).
This service may indirectly setup a set of other services, if they
require kernel modules to be loaded. The following complex
services are activated:

6.27.3.3 service: amanda

Advanced Maryland Automatic Network Disk Archiver Service Type:

• simple

Server Ports:

• udp/10080

Client Ports:

• default

Netfilter Modules

• nf_conntrack_amanda CONFIG_NF_CONNTRACK_AMANDA

110

http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_FTP.html
http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_IRC.html
http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_SIP.html
http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_PPTP.html
http://cateee.net/lkddb/web-lkddb/NF_CT_PROTO_GRE.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_FTP.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_IRC.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_SIP.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_PPTP.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_PROTO_GRE.html
http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_AMANDA.html

Netfilter NAT Modules

• nf_nat_amanda CONFIG_NF_NAT_AMANDA

Links

• Homepage
• Wikipedia

6.27.3.4 service: any

Match all traffic (without modules or indirect) Example:

server any *myname* accept proto 47

Service Type:

• simple

Server Ports:

• all

Client Ports:

• all

Netfilter Modules

•

Netfilter NAT Modules

•

Notes

Matches all traffic (all protocols, ports, etc), but does not care
about kernel modules and does not activate any other service
indirectly. In combination with the firehol-params(5) this service
can match unusual traffic (e.g. GRE - protocol 47).
Note that you have to supply your own name in addition to
“any”.

111

http://cateee.net/lkddb/web-lkddb/NF_NAT_AMANDA.html
http://www.amanda.org/
http://en.wikipedia.org/wiki/Advanced_Maryland_Automatic_Network_Disk_Archiver

6.27.3.5 service: anystateless

Match all traffic statelessly Example:

server anystateless *myname* accept proto 47

Service Type:

• complex

Server Ports:

• all

Client Ports:

• all

Notes

Matches all traffic (all protocols, ports, etc), but does not care
about kernel modules and does not activate any other service
indirectly. In combination with the firehol-params(5) this service
can match unusual traffic (e.g. GRE - protocol 47).
This service is identical to “any” but does not care about the
state of traffic.
Note that you have to supply your own name in addition to
“anystateless”.

6.27.3.6 service: apcupsd

APC UPS Daemon Example:

server apcupsd accept

Service Type:

• simple

Server Ports:

• tcp/6544

Client Ports:

• default

112

Links

• Homepage
• Wikipedia

Notes

This service must be defined as “server apcupsd accept” on all
machines not directly connected to the UPS (i.e. slaves).
Note that the port defined here is not the default port (6666)
used if you download and compile APCUPSD, since the default
conflicts with IRC and many distributions (like Debian) have
changed this to 6544.
You can define port 6544 in APCUPSD, by changing the value
of NETPORT in its configuration file, or overwrite this Fire-
HOL service definition using the procedures described in Adding
Services in firehol.conf(5).

6.27.3.7 service: apcupsdnis

APC UPS Daemon Network Information Server Example:

server apcupsdnis accept

Service Type:

• simple

Server Ports:

• tcp/3551

Client Ports:

• default

Links

• Homepage
• Wikipedia

Notes

This service allows the remote WEB interfaces of APCUPSD, to
connect and get information from the server directly connected
to the UPS device.

113

http://www.apcupsd.com
http://en.wikipedia.org/wiki/Apcupsd
http://www.apcupsd.com
http://en.wikipedia.org/wiki/Apcupsd
http://www.apcupsd.com/

6.27.3.8 service: aptproxy

Advanced Packaging Tool Proxy Example:

server aptproxy accept

Service Type:

• simple

Server Ports:

• tcp/9999

Client Ports:

• default

Links

• Wikipedia

6.27.3.9 service: asterisk

Asterisk PABX Example:

server asterisk accept

Service Type:

• simple

Server Ports:

• tcp/5038

Client Ports:

• default

Links

• Homepage
• Wikipedia

Notes

This service refers only to the manager interface of asterisk. You
should normally enable sip, h323, rtp, etc. at the firewall level,
if you enable the relative channel drivers of asterisk.

114

http://en.wikipedia.org/wiki/Apt-proxy
http://www.asterisk.org
http://en.wikipedia.org/wiki/Asterisk_PBX

6.27.3.10 service: cups

Common UNIX Printing System Example:

server cups accept

Service Type:

• simple

Server Ports:

• tcp/631 udp/631

Client Ports:

• any

Links

• Homepage
• Wikipedia

6.27.3.11 service: custom

Custom definitions Example:

server custom myimap tcp/143 default accept

Service Type:

• custom

Server Ports:

• N/A

Client Ports:

• N/A

Notes

115

http://www.cups.org
http://en.wikipedia.org/wiki/Common_Unix_Printing_System

The full syntax is:
subcommand custom name svr-proto/ports cli-ports action
params
This service is used by FireHOL to allow you create rules for
services which do not have a definition.
subcommand, action and params have their usual meanings.
A name must be supplied along with server ports in the form
proto/range and client ports which takes only a range.
To define services with the built-in extension mechanism to
avoid the need for custom services, see Adding Services in fire-
hol.conf(5).

6.27.3.12 service: cvspserver

Concurrent Versions System Example:

server cvspserver accept

Service Type:

• simple

Server Ports:

• tcp/2401

Client Ports:

• default

Links

• Homepage
• Wikipedia

6.27.3.13 service: darkstat

Darkstat network traffic analyser Example:

server darkstat accept

Service Type:

• simple

116

http://www.nongnu.org/cvs/
http://en.wikipedia.org/wiki/Concurrent_Versions_System

Server Ports:

• tcp/666

Client Ports:

• default

Links

• Homepage

6.27.3.14 service: daytime

Daytime Protocol Example:

server daytime accept

Service Type:

• simple

Server Ports:

• tcp/13

Client Ports:

• default

Links

• Wikipedia

6.27.3.15 service: dcc

Distributed Checksum Clearinghouse Example:

server dcc accept

Service Type:

• simple

Server Ports:

• udp/6277

117

https://unix4lyfe.org/darkstat/
http://en.wikipedia.org/wiki/Daytime_Protocol

Client Ports:

• default

Links

• Wikipedia

Notes

See also this DCC FAQ.

6.27.3.16 service: dcpp

Direct Connect++ P2P Example:

server dcpp accept

Service Type:

• simple

Server Ports:

• tcp/1412 udp/1412

Client Ports:

• default

Links

• Homepage

6.27.3.17 service: dhcp

Dynamic Host Configuration Protocol Example:

server dhcp accept

Service Type:

• complex

Server Ports:

• udp/67

118

http://en.wikipedia.org/wiki/Distributed_Checksum_Clearinghouse
http://www.rhyolite.com/dcc/FAQ.html#firewall-ports
http://dcplusplus.sourceforge.net

Client Ports:

• 68

Links

• Wikipedia

Notes

The dhcp service is implemented as stateless rules.
DHCP clients broadcast to the network (src 0.0.0.0 dst
255.255.255.255) to find a DHCP server. If the DHCP service
was stateful the iptables connection tracker would not match
the packets and deny to send the reply.
Note that this change does not affect the security of either DHCP
servers or clients, since only the specific ports are allowed (there
is no random port at either the server or the client side).
Note also that the “server dhcp accept” or “client dhcp accept”
commands should placed within interfaces that do not have src
and / or dst defined (because of the initial broadcast).
You can overcome this problem by placing the DHCP service
on a separate interface, without a src or dst but with a policy
return. Place this interface before the one that defines the rest
of the services.
For example:
interface eth0 dhcp
policy return
server dhcp accept
interface eth0 lan src "$mylan" dst "$myip"
client all accept
For example: interface eth0 dhcp policy return server dhcp accept
interface eth0 lan src “mylan”dst”myip” client all accept
This service implicitly sets its client or server to ipv4 mode.

6.27.3.18 service: dhcprelay

DHCP Relay Example:

server dhcprelay accept

Service Type:

• simple

119

http://en.wikipedia.org/wiki/Dhcp

Server Ports:

• udp/67

Client Ports:

• 67

Links

• Wikipedia

Notes

From RFC 1812 section 9.1.2:
In many cases, BOOTP clients and their associated BOOTP
server(s) do not reside on the same IP (sub)network. In such
cases, a third-party agent is required to transfer BOOTP mes-
sages between clients and servers. Such an agent was originally
referred to as a BOOTP forwarding agent. However, to avoid
confusion with the IP forwarding function of a router, the name
BOOTP relay agent has been adopted instead.
For more information about DHCP Relay see section 9.1.2 of
RFC 1812 and section 4 of RFC 1542

6.27.3.19 service: dhcpv6

Dynamic Host Configuration Protocol for IPv6 Example:

server dhcp accept
client dhcp accept

Service Type:

• complex

Server Ports:

• udp/547

Client Ports:

• udp/546

Links

• Wikipedia

120

http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_relaying
http://www.ietf.org/rfc/rfc1812.txt
http://www.ietf.org/rfc/rfc1542.txt
https://en.wikipedia.org/wiki/DHCPv6

Notes

The dhcp service is implemented as stateless rules. It cannot
be stateful as the connection tracker will not match a unicast
reply to a broadcast request. Further, if you wish to add src/dst
rule parameters, you must account for both the broadcast and
link-local network prefixes.
Clients broadcast from a link-local address to the multicast
address ff02::1:2 on UDP port 547 to find a server. The server
sends a unicast reply back to the client which listens on UDP
port 546.
For a FireHOL interface, creating a client will allow sending to
port 547 and receiving on port 546. Creating a server allows
sending to port 546 and receiving on port 547.
Unlike DHCP for IPv4, the source ports to be used are not
defined in DHCPv6 - see section 5.2 of RFC3315. Some servers
are known to make use of this to send from arbitrary ports, so
FireHOL does not assume a source port.
This service implicitly sets its client or server to ipv6 mode.

6.27.3.20 service: dict

Dictionary Server Protocol Example:

server dict accept

Service Type:

• simple

Server Ports:

• tcp/2628

Client Ports:

• default

Links

• Wikipedia

Notes

See RFC2229.

121

http://www.ietf.org/rfc/rfc3315.txt
http://en.wikipedia.org/wiki/DICT
http://www.ietf.org/rfc/rfc2229.txt

6.27.3.21 service: distcc

Distributed CC Example:

server distcc accept

Service Type:

• simple

Server Ports:

• tcp/3632

Client Ports:

• default

Links

• Homepage
• Wikipedia

Notes

For distcc security, please check the distcc security design.

6.27.3.22 service: dns

Domain Name System Example:

server dns accept

Service Type:

• simple

Server Ports:

• udp/53 tcp/53

Client Ports:

• any

Links

122

https://code.google.com/p/distcc/
http://en.wikipedia.org/wiki/Distcc
http://distcc.googlecode.com/svn/trunk/doc/web/security.html

• Wikipedia

Notes

On very busy DNS servers you may see a few dropped DNS
packets in your logs. This is normal. The iptables connection
tracker will timeout the session and lose unmatched DNS packets
that arrive too late to be useful.

6.27.3.23 service: echo

Echo Protocol Example:

server echo accept

Service Type:

• simple

Server Ports:

• tcp/7

Client Ports:

• default

Links

• Wikipedia

6.27.3.24 service: emule

eMule (Donkey network client) Example:

client emule accept src 192.0.2.1

Service Type:

• complex

Server Ports:

• many

Client Ports:

123

http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Echo_Protocol

• many

Links

• Homepage

Notes

According to eMule Port Definitions, FireHOL defines:
• Accept from any client port to the server at tcp/4661
• Accept from any client port to the server at tcp/4662
• Accept from any client port to the server at udp/4665
• Accept from any client port to the server at udp/4672
• Accept from any server port to the client at tcp/4662
• Accept from any server port to the client at udp/4672

Use the FireHOL firehol-client(5) command to match the eMule
client.
Please note that the eMule client is an HTTP client also.

6.27.3.25 service: eserver

eDonkey network server Example:

server eserver accept

Service Type:

• simple

Server Ports:

• tcp/4661 udp/4661 udp/4665

Client Ports:

• any

Links

• Wikipedia

124

http://www.emule-project.com
http://www.emule-project.net/home/perl/help.cgi?l=1&rm=show_topic&topic_id=122
http://en.wikipedia.org/wiki/Eserver

6.27.3.26 service: ESP

IPSec Encapsulated Security Payload (ESP) Example:

server ESP accept

Service Type:

• simple

Server Ports:

• 50/any

Client Ports:

• any

Links

• Wikipedia

Notes

For more information see this Archive of the FreeS/WAN docu-
mentation RFC 2406.

6.27.3.27 service: finger

Finger Protocol Example:

server finger accept

Service Type:

• simple

Server Ports:

• tcp/79

Client Ports:

• default

Links

• Wikipedia

125

http://en.wikipedia.org/wiki/IPsec#Encapsulating_Security_Payload
http://web.archive.org/web/20100918134143/http://www.freeswan.org/freeswan_trees/freeswan-1.99/doc/ipsec.html#ESP.ipsec
http://web.archive.org/web/20100918134143/http://www.freeswan.org/freeswan_trees/freeswan-1.99/doc/ipsec.html#ESP.ipsec
http://www.ietf.org/rfc/rfc2406.txt
http://en.wikipedia.org/wiki/Finger_protocol

6.27.3.28 service: ftp

File Transfer Protocol Example:

server ftp accept

Service Type:

• simple

Server Ports:

• tcp/21

Client Ports:

• default

Netfilter Modules

• nf_conntrack_ftp CONFIG_NF_CONNTRACK_FTP

Netfilter NAT Modules

• nf_nat_ftp CONFIG_NF_NAT_FTP

Links

• Wikipedia

Notes

The FTP service matches both active and passive FTP connec-
tions.

6.27.3.29 service: gift

giFT Internet File Transfer Example:

server gift accept

Service Type:

• simple

Server Ports:

126

http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_FTP.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_FTP.html
http://en.wikipedia.org/wiki/Ftp

• tcp/4302 tcp/1214 tcp/2182 tcp/2472

Client Ports:

• any

Links

• Homepage
• Wikipedia

Notes

The gift FireHOL service supports:
• Gnutella listening at tcp/4302
• FastTrack listening at tcp/1214
• OpenFT listening at tcp/2182 and tcp/2472

The above ports are the defaults given for the corresponding
giFT modules.
To allow access to the user interface ports of giFT, use the giftui.

6.27.3.30 service: giftui

giFT Internet File Transfer User Interface Example:

server giftui accept

Service Type:

• simple

Server Ports:

• tcp/1213

Client Ports:

• default

Links

• Homepage
• Wikipedia

Notes

This service refers only to the user interface ports offered by
giFT. To allow gift accept P2P requests, use the gift.

127

http://gift.sourceforge.net
http://en.wikipedia.org/wiki/GiFT
http://gift.sourceforge.net
http://en.wikipedia.org/wiki/GiFT

6.27.3.31 service: gkrellmd

GKrellM Daemon Example:

server gkrellmd accept

Service Type:

• simple

Server Ports:

• tcp/19150

Client Ports:

• default

Links

• Homepage
• Wikipedia

6.27.3.32 service: GRE

Generic Routing Encapsulation Example:

server GRE accept

Service Type:

• simple

Server Ports:

• 47/any

Client Ports:

• any

Netfilter Modules

• nf_conntrack_proto_gre CONFIG_NF_CT_PROTO_GRE

Netfilter NAT Modules

128

http://gkrellm.net/
http://en.wikipedia.org/wiki/Gkrellm
http://cateee.net/lkddb/web-lkddb/NF_CT_PROTO_GRE.html

• nf_nat_proto_gre CONFIG_NF_NAT_PROTO_GRE

Links

• Wikipedia

Notes

Protocol No 47.
For more information see RFC RFC 2784.

6.27.3.33 service: h323

H.323 VoIP Example:

server h323 accept

Service Type:

• simple

Server Ports:

• udp/1720 tcp/1720

Client Ports:

• default

Netfilter Modules

• nf_conntrack_h323 CONFIG_NF_CONNTRACK_H323

Netfilter NAT Modules

• nf_nat_h323 CONFIG_NF_NAT_H323

Links

• Wikipedia

129

http://cateee.net/lkddb/web-lkddb/NF_NAT_PROTO_GRE.html
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://www.ietf.org/rfc/rfc2784.txt
http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_H323.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_H323.html
http://en.wikipedia.org/wiki/H323

6.27.3.34 service: heartbeat

HeartBeat Example:

server heartbeat accept

Service Type:

• simple

Server Ports:

• udp/690:699

Client Ports:

• default

Links

• Homepage

Notes

This FireHOL service has been designed such a way that it will
allow multiple heartbeat clusters on the same LAN.

6.27.3.35 service: http

Hypertext Transfer Protocol Example:

server http accept

Service Type:

• simple

Server Ports:

• tcp/80

Client Ports:

• default

Links

• Wikipedia

130

http://www.linux-ha.org/
http://en.wikipedia.org/wiki/Http

6.27.3.36 service: httpalt

HTTP alternate port Example:

server httpalt accept

Service Type:

• simple

Server Ports:

• tcp/8080

Client Ports:

• default

Links

• Wikipedia

Notes

This port is commonly used by web servers, web proxies and
caches where the standard http port is not available or can or
should not be used.

6.27.3.37 service: https

Secure Hypertext Transfer Protocol Example:

server https accept

Service Type:

• simple

Server Ports:

• tcp/443

Client Ports:

• default

Links

• Wikipedia

131

http://en.wikipedia.org/wiki/Http
http://en.wikipedia.org/wiki/Https

6.27.3.38 service: hylafax

HylaFAX Example:

server hylafax accept

Service Type:

• complex

Server Ports:

• many

Client Ports:

• many

Links

• Homepage
• Wikipedia

Notes

This service allows incoming requests to server port tcp/4559
and outgoing from server port tcp/4558.
The correct operation of this service has not been verified.
USE THIS WITH CARE. A HYLAFAX CLIENT MAY OPEN
ALL TCP UNPRIVILEGED PORTS TO ANYONE (from port
tcp/4558).

6.27.3.39 service: iax

Inter-Asterisk eXchange Example:

server iax accept

Service Type:

• simple

Server Ports:

• udp/5036

132

http://www.hylafax.org/
http://en.wikipedia.org/wiki/Hylafax

Client Ports:

• default

Links

• Homepage
• Wikipedia

Notes

This service refers to IAX version 1. There is also iax2.

6.27.3.40 service: iax2

Inter-Asterisk eXchange v2 Example:

server iax2 accept

Service Type:

• simple

Server Ports:

• udp/5469 udp/4569

Client Ports:

• default

Links

• Homepage
• Wikipedia

Notes

This service refers to IAX version 2. There is also iax.

133

http://www.asterisk.org
http://en.wikipedia.org/wiki/Iax
http://www.asterisk.org
http://en.wikipedia.org/wiki/Iax

6.27.3.41 service: ICMP

Internet Control Message Protocol Example:

server ICMP accept

Service Type:

• simple

Server Ports:

• icmp/any

Client Ports:

• any

Links

• Wikipedia

6.27.3.42 service: icmp

Internet Control Message Protocol Alias for ICMP

6.27.3.43 service: ICMPV6

Internet Control Message Protocol v6 Example:

server ICMPV6 accept

Service Type:

• simple

Server Ports:

• icmpv6/any

Client Ports:

• any

Links

• Wikipedia

134

http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
http://en.wikipedia.org/wiki/ICMPv6

6.27.3.44 service: icmpv6

Internet Control Message Protocol v6 Alias for ICMPV6

6.27.3.45 service: icp

Internet Cache Protocol Example:

server icp accept

Service Type:

• simple

Server Ports:

• udp/3130

Client Ports:

• 3130

Links

• Wikipedia

6.27.3.46 service: ident

Identification Protocol Example:

server ident reject with tcp-reset

Service Type:

• simple

Server Ports:

• tcp/113

Client Ports:

• default

Links

• Wikipedia

135

http://en.wikipedia.org/wiki/Internet_Cache_Protocol
http://en.wikipedia.org/wiki/Ident_protocol

6.27.3.47 service: imap

Internet Message Access Protocol Example:

server imap accept

Service Type:

• simple

Server Ports:

• tcp/143

Client Ports:

• default

Links

• Wikipedia

6.27.3.48 service: imaps

Secure Internet Message Access Protocol Example:

server imaps accept

Service Type:

• simple

Server Ports:

• tcp/993

Client Ports:

• default

Links

• Wikipedia

136

http://en.wikipedia.org/wiki/Imap
http://en.wikipedia.org/wiki/Imap

6.27.3.49 service: ipsecnatt

NAT traversal and IPsec Service Type:

• simple

Server Ports:

• udp/4500

Client Ports:

• any

Links

• Wikipedia

6.27.3.50 service: ipv6error

ICMPv6 Error Handling Example:

server ipv6error accept

Service Type:

• complex

Server Ports:

• N/A

Client Ports:

• N/A

Notes

Not all icmpv6 error types should be treated equally inbound
and outbound.
The ipv6error rule wraps all of them in the following way: * allow
incoming messages only for existing sessions * allow outgoing
messages always
The following ICMPv6 messages are handled:

• destination-unreachable
• packet-too-big

137

http://en.wikipedia.org/wiki/NAT_traversal#IPsec_traversal_across_NAT

• ttl-zero-during-transit
• ttl-zero-during-reassembly
• unknown-header-type
• unknown-option

Interfaces should always have this set:
server ipv6error accept
In a router with inface being internal and outface being external
the following will meet the recommendations of RFC 4890:
server ipv6error accept
Do not use: client ipv6error accept unless you are control-
ling traffic on a router interface where outface is the internal
destination.
This service implicitly sets its client or server to ipv6 mode.

6.27.3.51 service: ipv6mld

IPv6 Multicast Listener Discovery for IPv6 Example:

client ipv6mld accept

Service Type:

• complex

Server Ports:

• N/A

Client Ports:

• N/A

Links

• Wikipedia

Notes

IPv6 uses Multicast Listener Discovery to discover multicast
listeners and what they are listening for.
In practice all IPv6 nodes are multicast listeners since multicast
is used in the neighbour discovery protocol which replaces ARP
in IPv4.
These rules are stateless since reports can happen automatically
as well as on query.

138

http://tools.ietf.org/html/rfc4890
https://en.wikipedia.org/wiki/Multicast_Listener_Discovery

Unless muticast snooping is disabled across the network, MLD
should be enabled for any clients:
client ipv6mld accept
MLD should also be enabled as a server on any hosts acting as
a router:
server ipv6mld accept
The rules should generally not be used to pass packets across a
firewall (e.g. in a router definition) unless the firewall is for a
bridge.
This service implicitly sets its client or server to ipv6 mode.

6.27.3.52 service: ipv6neigh

IPv6 Neighbour discovery Example:

client ipv6neigh accept
server ipv6neigh accept

Service Type:

• complex

Server Ports:

• N/A

Client Ports:

• N/A

Links

• Wikipedia

Notes

IPv6 uses the Neighbour Discovery Protocol to do automatic con-
figuration of routes and to replace ARP. To allow this functional-
ity the network neighbour and router solicitation/advertisement
messages should be enabled on each interface.
These rules are stateless since advertisement can happen auto-
matically as well as on solicitation.
Neighbour discovery (incoming) should always be enabled:
server ipv6neigh accept
Neighbour advertisement (outgoing) should always be enabled:
client ipv6neigh accept
The rules should not be used to pass packets across a firewall
(e.g. in a router definition) unless the firewall is for a bridge.
This service implicitly sets its client or server to ipv6 mode.

139

https://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol

6.27.3.53 service: ipv6router

IPv6 Router discovery Example:

client ipv6router accept

Service Type:

• complex

Server Ports:

• N/A

Client Ports:

• N/A

Links

• Wikipedia

Notes

IPv6 uses the Neighbour Discovery Protocol to do automatic con-
figuration of routes and to replace ARP. To allow this functional-
ity the network neighbour and router solicitation/advertisement
messages should be enabled on each interface.
These rules are stateless since advertisement can happen auto-
matically as well as on solicitation.
Router discovery (incoming) should always be enabled:
client ipv6router accept
Router advertisement (outgoing) should be enabled on a host
that routes:
server ipv6router accept
The rules should not be used to pass packets across a firewall
(e.g. in a router definition) unless the firewall is for a bridge.
This service implicitly sets its client or server to ipv6 mode.

6.27.3.54 service: irc

Internet Relay Chat Example:

server irc accept

140

https://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol

Service Type:

• simple

Server Ports:

• tcp/6667

Client Ports:

• default

Netfilter Modules

• nf_conntrack_irc CONFIG_NF_CONNTRACK_IRC

Netfilter NAT Modules

• nf_nat_irc CONFIG_NF_NAT_IRC

Links

• Wikipedia

6.27.3.55 service: isakmp

Internet Security Association and Key Management Protocol (IKE)
Example:

server isakmp accept

Service Type:

• simple

Server Ports:

• udp/500

Client Ports:

• any

Links

• Wikipedia

Notes

For more information see the Archive of the FreeS/WAN docu-
mentation

141

http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_IRC.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_IRC.html
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://en.wikipedia.org/wiki/ISAKMP
http://web.archive.org/web/20100918134143/http://www.freeswan.org/freeswan_trees/freeswan-1.99/doc/ipsec.html#IKE.ipsec
http://web.archive.org/web/20100918134143/http://www.freeswan.org/freeswan_trees/freeswan-1.99/doc/ipsec.html#IKE.ipsec

6.27.3.56 service: jabber

Extensible Messaging and Presence Protocol Example:

server jabber accept

Service Type:

• simple

Server Ports:

• tcp/5222 tcp/5223

Client Ports:

• default

Links

• Wikipedia

Notes

Allows clear and SSL client-to-server connections.

6.27.3.57 service: jabberd

Extensible Messaging and Presence Protocol (Server) Example:

server jabberd accept

Service Type:

• simple

Server Ports:

• tcp/5222 tcp/5223 tcp/5269

Client Ports:

• default

Links

• Wikipedia

Notes

Allows clear and SSL client-to-server and server-to-server con-
nections.
Use this service for a jabberd server. In all other cases, use the
jabber.

142

http://en.wikipedia.org/wiki/Jabber
http://en.wikipedia.org/wiki/Jabber

6.27.3.58 service: l2tp

Layer 2 Tunneling Protocol Service Type:

• simple

Server Ports:

• udp/1701

Client Ports:

• any

Links

• Wikipedia

6.27.3.59 service: ldap

Lightweight Directory Access Protocol Example:

server ldap accept

Service Type:

• simple

Server Ports:

• tcp/389

Client Ports:

• default

Links

• Wikipedia

143

http://en.wikipedia.org/wiki/L2tp
http://en.wikipedia.org/wiki/Ldap

6.27.3.60 service: ldaps

Secure Lightweight Directory Access Protocol Example:

server ldaps accept

Service Type:

• simple

Server Ports:

• tcp/636

Client Ports:

• default

Links

• Wikipedia

6.27.3.61 service: lpd

Line Printer Daemon Protocol Example:

server lpd accept

Service Type:

• simple

Server Ports:

• tcp/515

Client Ports:

• any

Links

• Wikipedia

Notes

LPD is documented in RFC 1179.
Since many operating systems incorrectly use the non-default
client ports for LPD access, this definition allows any client port
to access the service (in addition to the RFC defined 721 to 731
inclusive).

144

http://en.wikipedia.org/wiki/Ldap
http://en.wikipedia.org/wiki/Line_Printer_Daemon_protocol
http://www.ietf.org/rfc/rfc1179.txt

6.27.3.62 service: microsoft-ds

Direct Hosted (NETBIOS-less) SMB Example:

server microsoft_ds accept

Service Type:

• simple

Server Ports:

• tcp/445

Client Ports:

• default

Notes

Direct Hosted (i.e. NETBIOS-less SMB)
This is another NETBIOS Session Service with minor differences
with netbios_ssn. It is supported only by Windows 2000 and
Windows XP and it offers the advantage of being independent
of WINS for name resolution.
It seems that samba supports transparently this protocol on the
netbios_ssn ports, so that either direct hosted or traditional
SMB can be served simultaneously.
Please refer to the netbios_ssn for more information.

6.27.3.63 service: mms

Microsoft Media Server Example:

server mms accept

Service Type:

• simple

Server Ports:

• tcp/1755 udp/1755

Client Ports:

145

• default

Netfilter Modules

• See here.

Netfilter NAT Modules

• See here.

Links

• Wikipedia

Notes

Microsoft’s proprietary network streaming protocol used to trans-
fer unicast data in Windows Media Services (previously called
NetShow Services).

6.27.3.64 service: msn

Microsoft MSN Messenger Service Example:

server msn accept

Service Type:

• simple

Server Ports:

• tcp/1863 udp/1863

Client Ports:

• default

6.27.3.65 service: msnp

msnp Example:

server msnp accept

Service Type:

146

http://www.netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO-5.html#ss5.5
http://www.netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO-5.html#ss5.5
http://en.wikipedia.org/wiki/Microsoft_Media_Server

• simple

Server Ports:

• tcp/6891

Client Ports:

• default

6.27.3.66 service: ms-ds

Direct Hosted (NETBIOS-less) SMB Alias for microsoft_ds

6.27.3.67 service: multicast

Multicast Example:

server multicast reject with proto-unreach

Service Type:

• complex

Server Ports:

• N/A

Client Ports:

• N/A

Links

• Wikipedia

Notes

The multicast service matches all packets sent to the $MULTI-
CAST_IPS addresses using IGMP or UDP. For IPv4 that means
224.0.0.0/4 and for IPv6 FF00::/16.

147

http://en.wikipedia.org/wiki/Multicast

6.27.3.68 service: mysql

MySQL Example:

server mysql accept

Service Type:

• simple

Server Ports:

• tcp/3306

Client Ports:

• default

Links

• Homepage
• Wikipedia

6.27.3.69 service: netbackup

Veritas NetBackup service Example:

server netbackup accept
client netbackup accept

Service Type:

• simple

Server Ports:

• tcp/13701 tcp/13711 tcp/13720 tcp/13721 tcp/13724 tcp/13782
tcp/13783

Client Ports:

• any

Links

• Wikipedia

Notes

To use this service you must define it as both client and server
in NetBackup clients and NetBackup servers.

148

http://www.mysql.com/
http://en.wikipedia.org/wiki/Mysql
http://en.wikipedia.org/wiki/Netbackup

6.27.3.70 service: netbios-dgm

NETBIOS Datagram Distribution Service Example:

server netbios_dgm accept

Service Type:

• simple

Server Ports:

• udp/138

Client Ports:

• any

Links

• Wikipedia

Notes

See also the samba.
Keep in mind that this service broadcasts (to the broadcast
address of your LAN) UDP packets. If you place this service
within an interface that has a dst parameter, remember to include
(in the dst parameter) the broadcast address of your LAN too.

6.27.3.71 service: netbios-ns

NETBIOS Name Service Example:

server netbios_ns accept

Service Type:

• simple

Server Ports:

• udp/137

Client Ports:

• any

149

http://en.wikipedia.org/wiki/Netbios#Datagram_distribution_service

Links

• Wikipedia

Notes

See also the samba.

6.27.3.72 service: netbios-ssn

NETBIOS Session Service Example:

server netbios_ssn accept

Service Type:

• simple

Server Ports:

• tcp/139

Client Ports:

• default

Links

• Wikipedia

Notes

See also the samba.
Please keep in mind that newer NETBIOS clients prefer to use
port 445 (microsoft_ds) for the NETBIOS session service, and
when this is not available they fall back to port 139 (netbios_ssn).
Versions of samba above 3.x bind automatically to ports 139 and
445.
If you have an older samba version and your policy on an interface
or router is DROP, clients trying to access port 445 will have to
timeout before falling back to port 139. This timeout can be up
to several minutes.
To overcome this problem you can explicitly REJECT the mi-
crosoft_ds with a tcp-reset message:
server microsoft_ds reject with tcp-reset

150

http://en.wikipedia.org/wiki/Netbios#Name_service
http://en.wikipedia.org/wiki/Netbios#Session_service

6.27.3.73 service: nfs

Network File System Example:

client nfs accept dst 192.0.2.1

Service Type:

• complex

Server Ports:

• many

Client Ports:

• N/A

Links

• Wikipedia

Notes

The NFS service queries the RPC service on the NFS server
host to find out the ports nfsd, mountd, lockd and rquotad are
listening. Then, according to these ports it sets up rules on
all the supported protocols (as reported by RPC) in order the
clients to be able to reach the server.
For this reason, the NFS service requires that:

• the firewall is restarted if the NFS server is restarted
• the NFS server must be specified on all nfs statements (only

if it is not the localhost)
Since NFS queries the remote RPC server, it is required to also
be allowed to do so, by allowing the portmap too. Take care that
this is allowed by the running firewall when FireHOL tries to
query the RPC server. So you might have to setup NFS in two
steps: First add the portmap service and activate the firewall,
then add the NFS service and restart the firewall.
To avoid this you can setup your NFS server to listen on pre-
defined ports, as documented in NFS Howto. If you do this
then you will have to define the the ports using the procedure
described in Adding Services in firehol.conf(5).

151

http://en.wikipedia.org/wiki/Network_File_System_%28protocol%29
http://nfs.sourceforge.net/nfs-howto/ar01s06.html#nfs_firewalls

6.27.3.74 service: nis

Network Information Service Example:

client nis accept dst 192.0.2.1

Service Type:

• complex

Server Ports:

• many

Client Ports:

• N/A

Links

• Wikipedia

Notes

The nis service queries the RPC service on the nis server host
to find out the ports ypserv and yppasswdd are listening. Then,
according to these ports it sets up rules on all the supported
protocols (as reported by RPC) in order the clients to be able
to reach the server.
For this reason, the nis service requires that:

• the firewall is restarted if the nis server is restarted
• the nis server must be specified on all nis statements (only

if it is not the localhost)
Since nis queries the remote RPC server, it is required to also be
allowed to do so, by allowing the portmap too. Take care that
this is allowed by the running firewall when FireHOL tries to
query the RPC server. So you might have to setup nis in two
steps: First add the portmap service and activate the firewall,
then add the nis service and restart the firewall.
This service was added to FireHOL by Carlos Rodrigues. His
comments regarding this implementation, are:
These rules work for client access only!
Pushing changes to slave servers won’t work if these rules are
active somewhere between the master and its slaves, because it
is impossible to predict the ports where yppush will be listening
on each push.

152

http://en.wikipedia.org/wiki/Network_Information_Service
http://sourceforge.net/p/firehol/feature-requests/20/

Pulling changes directly on the slaves will work, and could be
improved performance-wise if these rules are modified to open
fypxfrd. This wasn’t done because it doesn’t make that much
sense since pushing changes on the master server is the most
common, and recommended, way to replicate maps.

6.27.3.75 service: nntp

Network News Transfer Protocol Example:

server nntp accept

Service Type:

• simple

Server Ports:

• tcp/119

Client Ports:

• default

Links

• Wikipedia

6.27.3.76 service: nntps

Secure Network News Transfer Protocol Example:

server nntps accept

Service Type:

• simple

Server Ports:

• tcp/563

Client Ports:

• default

Links

• Wikipedia

153

http://en.wikipedia.org/wiki/Nntp
http://en.wikipedia.org/wiki/Nntp

6.27.3.77 service: nrpe

Nagios NRPE Service Type:

• simple

Server Ports:

• tcp/5666

Client Ports:

• default

Links

• Wikipedia

6.27.3.78 service: ntp

Network Time Protocol Example:

server ntp accept

Service Type:

• simple

Server Ports:

• udp/123 tcp/123

Client Ports:

• any

Links

• Wikipedia

154

http://en.wikipedia.org/wiki/Nagios#NRPE
http://en.wikipedia.org/wiki/Network_Time_Protocol

6.27.3.79 service: nut

Network UPS Tools Example:

server nut accept

Service Type:

• simple

Server Ports:

• tcp/3493 udp/3493

Client Ports:

• default

Links

• Homepage

6.27.3.80 service: nxserver

NoMachine NX Server Example:

server nxserver accept

Service Type:

• simple

Server Ports:

• tcp/5000:5200

Client Ports:

• default

Links

• Wikipedia

Notes

155

http://www.networkupstools.org/
http://en.wikipedia.org/wiki/NX_Server

Default ports used by NX server for connections without encryp-
tion.
Note that nxserver also needs the ssh to be enabled.
This information has been extracted from this The TCP ports
used by nxserver are 4000 + DISPLAY_BASE to 4000 + DIS-
PLAY_BASE + DISPLAY_LIMIT. DISPLAY_BASE and DIS-
PLAY_LIMIT are set in /usr/NX/etc/node.conf and the defaults
are DISPLAY_BASE=1000 and DISPLAY_LIMIT=200.
For encrypted nxserver sessions, only ssh is needed.

6.27.3.81 service: openvpn

OpenVPN Service Type:

• simple

Server Ports:

• tcp/1194 udp/1194

Client Ports:

• default

Links

• Homepage
• Wikipedia

6.27.3.82 service: oracle

Oracle Database Example:

server oracle accept

Service Type:

• simple

Server Ports:

• tcp/1521

Client Ports:

• default

Links

• Wikipedia

156

http://openvpn.net/
http://en.wikipedia.org/wiki/OpenVPN
http://en.wikipedia.org/wiki/Oracle_db

6.27.3.83 service: OSPF

Open Shortest Path First Example:

server OSPF accept

Service Type:

• simple

Server Ports:

• 89/any

Client Ports:

• any

Links

• Wikipedia

6.27.3.84 service: ping

Ping (ICMP echo) Example:

server ping accept

Service Type:

• complex

Server Ports:

• N/A

Client Ports:

• N/A

Links

• Wikipedia

Notes

This services matches requests of protocol ICMP and type
echo-request (TYPE=8) and their replies of type echo-reply
(TYPE=0).
The ping service is stateful.

157

http://en.wikipedia.org/wiki/Ospf
http://en.wikipedia.org/wiki/Ping

6.27.3.85 service: pop3

Post Office Protocol Example:

server pop3 accept

Service Type:

• simple

Server Ports:

• tcp/110

Client Ports:

• default

Links

• Wikipedia

6.27.3.86 service: pop3s

Secure Post Office Protocol Example:

server pop3s accept

Service Type:

• simple

Server Ports:

• tcp/995

Client Ports:

• default

Links

• Wikipedia

158

http://en.wikipedia.org/wiki/Pop3
http://en.wikipedia.org/wiki/Pop3

6.27.3.87 service: portmap

Open Network Computing Remote Procedure Call - Port Mapper
Example:

server portmap accept

Service Type:

• simple

Server Ports:

• udp/111 tcp/111

Client Ports:

• any

Links

• Wikipedia

6.27.3.88 service: postgres

PostgreSQL Example:

server postgres accept

Service Type:

• simple

Server Ports:

• tcp/5432

Client Ports:

• default

Links

• Wikipedia

159

http://en.wikipedia.org/wiki/Portmap
http://en.wikipedia.org/wiki/Postgres

6.27.3.89 service: pptp

Point-to-Point Tunneling Protocol Example:

server pptp accept

Service Type:

• simple

Server Ports:

• tcp/1723

Client Ports:

• default

Netfilter Modules

• nf_conntrack_pptp CONFIG_NF_CONNTRACK_PPTP
• nf_conntrack_proto_gre CONFIG_NF_CT_PROTO_GRE

Netfilter NAT Modules

• nf_nat_pptp CONFIG_NF_NAT_PPTP
• nf_nat_proto_gre CONFIG_NF_NAT_PROTO_GRE

Links

• Wikipedia

6.27.3.90 service: privoxy

Privacy Proxy Example:

server privoxy accept

Service Type:

• simple

Server Ports:

• tcp/8118

Client Ports:

• default

Links

• Homepage

160

http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_PPTP.html
http://cateee.net/lkddb/web-lkddb/NF_CT_PROTO_GRE.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_PPTP.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_PROTO_GRE.html
http://en.wikipedia.org/wiki/Pptp
http://www.privoxy.org/

6.27.3.91 service: radius

Remote Authentication Dial In User Service (RADIUS) Example:

server radius accept

Service Type:

• simple

Server Ports:

• udp/1812 udp/1813

Client Ports:

• default

Links

• Wikipedia

6.27.3.92 service: radiusold

Remote Authentication Dial In User Service (RADIUS) Example:

server radiusold accept

Service Type:

• simple

Server Ports:

• udp/1645 udp/1646

Client Ports:

• default

Links

• Wikipedia

161

http://en.wikipedia.org/wiki/RADIUS
http://en.wikipedia.org/wiki/RADIUS

6.27.3.93 service: radiusoldproxy

Remote Authentication Dial In User Service (RADIUS) Example:

server radiusoldproxy accept

Service Type:

• simple

Server Ports:

• udp/1647

Client Ports:

• default

Links

• Wikipedia

6.27.3.94 service: radiusproxy

Remote Authentication Dial In User Service (RADIUS) Example:

server radiusproxy accept

Service Type:

• simple

Server Ports:

• udp/1814

Client Ports:

• default

Links

• Wikipedia

162

http://en.wikipedia.org/wiki/RADIUS
http://en.wikipedia.org/wiki/RADIUS

6.27.3.95 service: rdp

Remote Desktop Protocol Example:

server rdp accept

Service Type:

• simple

Server Ports:

• tcp/3389

Client Ports:

• default

Links

• Wikipedia

Notes

Remote Desktop Protocol is also known also as Terminal Services.

6.27.3.96 service: rndc

Remote Name Daemon Control Example:

server rndc accept

Service Type:

• simple

Server Ports:

• tcp/953

Client Ports:

• default

Links

• Wikipedia

163

http://en.wikipedia.org/wiki/Remote_Desktop_Protocol
http://en.wikipedia.org/wiki/Rndc

6.27.3.97 service: rsync

rsync protocol Example:

server rsync accept

Service Type:

• simple

Server Ports:

• tcp/873 udp/873

Client Ports:

• default

Links

• Homepage
• Wikipedia

6.27.3.98 service: rtp

Real-time Transport Protocol Example:

server rtp accept

Service Type:

• simple

Server Ports:

• udp/10000:20000

Client Ports:

• any

Links

• Wikipedia

Notes

RTP ports are generally all the UDP ports. This definition
narrows down RTP ports to UDP 10000 to 20000.

164

http://rsync.samba.org/
http://en.wikipedia.org/wiki/Rsync
http://en.wikipedia.org/wiki/Real-time_Transport_Protocol

6.27.3.99 service: samba

Samba Example:

server samba accept

Service Type:

• complex

Server Ports:

• many

Client Ports:

• default

Links

• Homepage
• Wikipedia

Notes

The samba service automatically sets all the rules for netbios_ns,
netbios_dgm, netbios_ssn and microsoft_ds.
Please refer to the notes of the above services for more informa-
tion.
NETBIOS initiates based on the broadcast address of an interface
(request goes to broadcast address) but the server responds
from its own IP address. This makes the “server samba accept”
statement drop the server reply, because of the way the iptables
connection tracker works.
This service definition includes a hack, that allows a Linux samba
server to respond correctly in such situations, by allowing new
outgoing connections from the well known netbios_ns port to
the clients high ports.
However, for clients and routers this hack is not applied because
it would open all unprivileged ports to the samba server. The
only solution to overcome the problem in such cases (routers
or clients) is to build a trust relationship between the samba
servers and clients.

165

http://www.samba.org/
http://en.wikipedia.org/wiki/Samba_(software)

6.27.3.100 service: sane

SANE Scanner service Service Type:

• simple

Server Ports:

• tcp/6566

Client Ports:

• default

Netfilter Modules

• nf_conntrack_sane CONFIG_NF_CONNTRACK_SANE

Netfilter NAT Modules

• N/A

Links

• Homepage

6.27.3.101 service: sip

Session Initiation Protocol Example:

server sip accept

Service Type:

• simple

Server Ports:

• tcp/5060 udp/5060

Client Ports:

• 5060 default

Netfilter Modules

• nf_conntrack_sip CONFIG_NF_CONNTRACK_SIP

166

http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_SANE.html
http://www.sane-project.org/
http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_SIP.html

Netfilter NAT Modules

• nf_nat_sip CONFIG_NF_NAT_SIP

Links

• Wikipedia

Notes

SIP is an IETF standard protocol (RFC 2543) for initiating
interactive user sessions involving multimedia elements such as
video, voice, chat, gaming, etc. SIP works in the application
layer of the OSI communications model.

6.27.3.102 service: smtp

Simple Mail Transport Protocol Example:

server smtp accept

Service Type:

• simple

Server Ports:

• tcp/25

Client Ports:

• default

Links

• Wikipedia

6.27.3.103 service: smtps

Secure Simple Mail Transport Protocol Example:

server smtps accept

Service Type:

• simple

167

http://cateee.net/lkddb/web-lkddb/NF_NAT_SIP.html
http://en.wikipedia.org/wiki/Session_Initiation_Protocol
http://www.voip-info.org/wiki/view/SIP
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

Server Ports:

• tcp/465

Client Ports:

• default

Links

• Wikipedia

6.27.3.104 service: snmp

Simple Network Management Protocol Example:

server snmp accept

Service Type:

• simple

Server Ports:

• udp/161

Client Ports:

• default

Links

• Wikipedia

6.27.3.105 service: snmptrap

SNMP Trap Example:

server snmptrap accept

Service Type:

• simple

Server Ports:

• udp/162

168

http://en.wikipedia.org/wiki/SMTPS
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

Client Ports:

• any

Links

• Wikipedia

Notes

An SNMP trap is a notification from an agent to a manager.

6.27.3.106 service: socks

SOCKet Secure Example:

server socks accept

Service Type:

• simple

Server Ports:

• tcp/1080 udp/1080

Client Ports:

• default

Links

• Wikipedia

Notes

See also RFC 1928.

169

http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol#Trap
http://en.wikipedia.org/wiki/SOCKS
http://www.ietf.org/rfc/rfc1928.txt

6.27.3.107 service: squid

Squid Web Cache Example:

server squid accept

Service Type:

• simple

Server Ports:

• tcp/3128

Client Ports:

• default

Links

• Homepage
• Wikipedia

6.27.3.108 service: ssh

Secure Shell Protocol Example:

server ssh accept

Service Type:

• simple

Server Ports:

• tcp/22

Client Ports:

• default

Links

• Wikipedia

170

http://www.squid-cache.org/
http://en.wikipedia.org/wiki/Squid_(software)
http://en.wikipedia.org/wiki/Secure_Shell

6.27.3.109 service: stun

Session Traversal Utilities for NAT Example:

server stun accept

Service Type:

• simple

Server Ports:

• udp/3478 udp/3479

Client Ports:

• any

Links

• Wikipedia

Notes

STUN is a protocol for assisting devices behind a NAT firewall
or router with their packet routing.

6.27.3.110 service: submission

SMTP over SSL/TLS submission Example:

server submission accept

Service Type:

• simple

Server Ports:

• tcp/587

Client Ports:

• default

Links

• Wikipedia

Notes

Submission is essentially normal SMTP with an SSL/TLS nego-
tiation.

171

http://en.wikipedia.org/wiki/STUN
http://www.voip-info.org/wiki/view/STUN
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

6.27.3.111 service: sunrpc

Open Network Computing Remote Procedure Call - Port Mapper
Alias for portmap

6.27.3.112 service: swat

Samba Web Administration Tool Example:

server swat accept

Service Type:

• simple

Server Ports:

• tcp/901

Client Ports:

• default

Links

• Homepage

6.27.3.113 service: syslog

Syslog Remote Logging Protocol Example:

server syslog accept

Service Type:

• simple

Server Ports:

• udp/514

Client Ports:

• 514 default

Links

• Wikipedia

172

http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/SWAT.html
http://en.wikipedia.org/wiki/Syslog

6.27.3.114 service: telnet

Telnet Example:

server telnet accept

Service Type:

• simple

Server Ports:

• tcp/23

Client Ports:

• default

Links

• Wikipedia

6.27.3.115 service: tftp

Trivial File Transfer Protocol Example:

server tftp accept

Service Type:

• simple

Server Ports:

• udp/69

Client Ports:

• default

Netfilter Modules

• nf_conntrack_tftp CONFIG_NF_CONNTRACK_TFTP

Netfilter NAT Modules

• nf_nat_tftp CONFIG_NF_NAT_TFTP

Links

• Wikipedia

173

http://en.wikipedia.org/wiki/Telnet
http://cateee.net/lkddb/web-lkddb/NF_CONNTRACK_TFTP.html
http://cateee.net/lkddb/web-lkddb/NF_NAT_TFTP.html
http://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol

6.27.3.116 service: time

Time Protocol Example:

server time accept

Service Type:

• simple

Server Ports:

• tcp/37 udp/37

Client Ports:

• default

Links

• Wikipedia

6.27.3.117 service: timestamp

ICMP Timestamp Example:

server timestamp accept

Service Type:

• complex

Server Ports:

• N/A

Client Ports:

• N/A

Links

• Wikipedia

Notes

This services matches requests of protocol ICMP and type
timestamp-request (TYPE=13) and their replies of type
timestamp-reply (TYPE=14).
The timestamp service is stateful.

174

http://en.wikipedia.org/wiki/Time_Protocol
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol#Timestamp

6.27.3.118 service: tomcat

HTTP alternate port Alias for httpalt

6.27.3.119 service: upnp

Universal Plug and Play Example:

server upnp accept

Service Type:

• simple

Server Ports:

• udp/1900 tcp/2869

Client Ports:

• default

Links

• Homepage
• Wikipedia

Notes

For a Linux implementation see: Linux IGD.

6.27.3.120 service: uucp

Unix-to-Unix Copy Example:

server uucp accept

Service Type:

• simple

Server Ports:

• tcp/540

Client Ports:

• default

Links

• Wikipedia

175

http://upnp.sourceforge.net/
http://en.wikipedia.org/wiki/Universal_Plug_and_Play
http://linux-igd.sourceforge.net/
http://en.wikipedia.org/wiki/UUCP

6.27.3.121 service: vmware

vmware Example:

server vmware accept

Service Type:

• simple

Server Ports:

• tcp/902

Client Ports:

• default

Notes

Used from VMWare 1 and up. See the VMWare KnowledgeBase.

6.27.3.122 service: vmwareauth

vmwareauth Example:

server vmwareauth accept

Service Type:

• simple

Server Ports:

• tcp/903

Client Ports:

• default

Notes

Used from VMWare 1 and up. See the VMWare KnowledgeBase.

176

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1012382
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1012382

6.27.3.123 service: vmwareweb

vmwareweb Example:

server vmwareweb accept

Service Type:

• simple

Server Ports:

• tcp/8222 tcp/8333

Client Ports:

• default

Notes

Used from VMWare 2 and up. See VMWare Server 2.0 release
notes and the VMWare KnowledgeBase.

6.27.3.124 service: vnc

Virtual Network Computing Example:

server vnc accept

Service Type:

• simple

Server Ports:

• tcp/5900:5903

Client Ports:

• default

Links

• Wikipedia

Notes

VNC is a graphical desktop sharing protocol.

177

http://www.vmware.com/support/server2/doc/releasenotes_vmserver2.html
http://www.vmware.com/support/server2/doc/releasenotes_vmserver2.html
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1012382
http://en.wikipedia.org/wiki/Virtual_Network_Computing

6.27.3.125 service: webcache

HTTP alternate port Alias for httpalt

6.27.3.126 service: webmin

Webmin Administration System Example:

server webmin accept

Service Type:

• simple

Server Ports:

• tcp/10000

Client Ports:

• default

Links

• Homepage

6.27.3.127 service: whois

WHOIS Protocol Example:

server whois accept

Service Type:

• simple

Server Ports:

• tcp/43

Client Ports:

• default

Links

• Wikipedia

178

http://www.webmin.com/
http://en.wikipedia.org/wiki/Whois

6.27.3.128 service: xbox

Xbox Live Example:

client xbox accept

Service Type:

• complex

Server Ports:

• many

Client Ports:

• default

Notes

Definition for the Xbox live service.
See program source for contributor details.

6.27.3.129 service: xdmcp

X Display Manager Control Protocol Example:

server xdmcp accept

Service Type:

• simple

Server Ports:

• udp/177

Client Ports:

• default

Links

• Wikipedia

Notes

See Gnome Display Manager for a discussion about XDMCP and
firewalls (Gnome Display Manager is a replacement for XDM).

179

http://en.wikipedia.org/wiki/X_display_manager_(program_type)#X_Display_Manager_Control_Protocol
http://www.jirka.org/gdm-documentation/x70.html

6.28 firehol-synproxy(5)

6.28.1 NAME

firehol-synproxy - configure synproxy

6.28.2 SYNOPSIS

synproxy type rules-to-match-request action [action options]

6.28.3 DESCRIPTION

• type defines where the SYNPROXY will be attached. It can be input (or
in), forward (or pass):

– use input (or in) when the IP of the real server is an IP assigned to
a physical interface of the machine (i.e. the IP is at the firewall itself)

– use forward (or pass) when the IP of the real server is routed by the
machine (i.e. SYNPROXY should look at the FORWARD chain for
this traffic).

• rules to match request are FireHOL optional rule parameters and
should match the original client REQUEST, before any destination NAT.
inface and dst are required:

– inface is one or more interfaces the REQUEST should be received
from

– dst is the IP of the real server, as seen by the client (before any
destination NAT)

• action defines how SYNPROXY will reach the real server and can be:

– accept to just allow the REQUEST reach the real server without any
destination NAT

– dnat to IP:PORT or dnat to IP1-IP2:PORT1-PORT2 or dnat to
IP or dnat to :PORT to have SYNPROXY reach a server on another
machine in a DMZ (different IP and/or PORT compared to the
original request). The synproxy statement supports everything
supported by the dnat helper (see firehol-nat(5)).

180

– redirect to PORT to divert the request to a port on the firewall
itself. The synproxy statement supports everything supported by the
redirect helper (see firehol-nat(5)).

– action CUSTOM_ACTION to have any other FireHOL action performed
on the NEW socket. Use the action helper to define custom actions
(see firehol-action(5)).

– action options are everything supported by FireHOL optional rule
parameters that should be applied only on the final action of SYN
packet from SYNPROXY to the real server. For example this can
be used to append loglimit "TEXT" to have something logged by
iptables, or limit the concurrent sockets with connlimit. Generally,
everything you can write on the same line after server http accept
is also accepted here.

6.28.4 BACKGROUND

SYNPROXY is a TCP SYN packets proxy. It can be used to protect any TCP
server (like a web server) from SYN floods and similar DDos attacks.

SYNPROXY is a netfilter module, in the Linux kernel. It is optimized to
handle millions of packets per second utilizing all CPUs available without any
concurrency locking between the connections.

The net effect of this, is that the real servers will not notice any change during
the attack. The valid TCP connections will pass through and served, while the
attack will be stopped at the firewall.

For more information on why you should use a SYNPROXY, check these articles:

• http://rhelblog.redhat.com/2014/04/11/mitigate-tcp-syn-flood-attacks-
with-red-hat-enterprise-linux-7-beta/

• https://r00t-services.net/knowledgebase/14/Homemade-DDoS-Protection-
Using-IPTables-SYNPROXY.html

SYNPROXY is included in the Linux kernels since version 3.12.

6.28.5 HOW IT WORKS

• When a SYNPROXY is used, clients transparently get connected to the
SYNPROXY. So the 3-way TCP handshake happens first between the
client and the SYNPROXY:

181

– Clients send TCP SYN to server A
– At the firewall, when this packet arrives it is marked as UNTRACKED
– The UNTRACKED TCP SYN packet is then given to SYNPROXY
– SYNPROXY gets this and responds (as server A) with TCP

SYN+ACK (UNTRACKED)
– Client responds with TCP ACK (marked as INVALID or UN-

TRACKED in iptables) which is also given to SYNPROXY

• Once a client has been connected to the SYNPROXY, SYNPROXY auto-
matically initiates a 3-way TCP handshake with the real server, spoofing
the SYN packet so that the real server will see that the original client is
attempting to connect:

– SYNPROXY sends TCP SYN to real server A. This is a NEW
connection in iptables and happens on the OUTPUT chain. The
source IP of the packet is the IP of the client

– The real server A responds with SYN+ACK to the client
– SYNPROXY receives this and responds back to the server with ACK.

The connection is now marked as ESTABLISHED

• Once the connection has been established, SYNPROXY leaves the traffic
flow between the client and the server

So, SYNPROXY can be used for any kind of TCP traffic. It can be used for both
unencrypted and encrypted traffic, since it does not interfere with the content
itself.

6.28.6 USE CASES

In FireHOL SYNPROXY support is implemented as a helper. The synproxy
command can be used to set up any number of SYNPROXYs.

FireHOL can set up SYNPROXY for any of these cases:

1. real server on the firewall itself, on the same port (e.g. SYNPROXY
on port 80, real server on port 80 too).

2. real server on the firewall itself, on a different port (e.g. SYN-
PROXY on port 2200, real server on port 22).

3. real server on a different machine, without NAT (e.g. SYNPROXY
on a router catching traffic towards IP A, port 80 and real server is at IP
A port 80 too).

182

4. real server on a different machine, with NAT (e.g. SYNPROXY on
a router catching traffic towards IP A, port 80 and real server is at IP
10.1.1.1 port 90).

5. screening incoming traffic that should never be sent to a real
server so that traps and dynamic blacklists can be created using traffic
that has been screened by SYNPROXY (eliminate “internet noise” and
spoofed packets).

So, generally, all cases are covered.

6.28.7 DESIGN

The general guidelines for using synproxy in FireHOL, are:

1. Design your firewall as you would normally do without SYN-
PROXY

2. Test that it works without SYNPROXY. Test especially the servers you
want to protect. They should be working too

3. Add synproxy statements for the servers you want to protect.

To achieve these requirements:

1. The helper will automatically do everything needed for SYNPROXY to:

• receive the initial SYN packet from the client
• respond back to the client with SYN+ACK
• receive the first ACK packet from the client
• send the initial SYN packet to the server

There are cases where the above are very tricky to achieve. You don’t need to
match these in your firehol.conf. The synproxy helper will automatically
take care of them. However:

You do need the allow the flow of traffic between the real server
and the real client (as you normally do without a synproxy, with
a client, server, or route statement in an interface or router
section).

2. The helper will prevent the 3-way TCP handshake between SYNPROXY
and the real server interact with other destination NAT rules you
may have. However for this to happen, make sure you place the
synproxy statements above any destination NAT rules (redirect, dnat,
transparent_squid, transparent_proxy, tproxy, etc). So:

183

SYNPROXY will interact with destination NAT you have in
firehol.conf only if the synproxy statements are place below the
destination NAT ones.
You normally do not need to have synproxy interact with other des-
tination NAT rules. The synproxy helper will handle the destination
NAT (dnat or redirect) it needs by itself.
So place synproxy statements above all destination NAT
statements, unless you know what you are doing.

3. The helper will allow the 3-way TCP handshake between SYNPROXY
and the real server interact with source NAT rules you may have (snat,
masquerade), since these may be needed to reach the real server.

6.28.8 LIMITATIONS

1. Internally there are matches that are made without taking into account the
original inface. So, in case different actions have to be taken depending
on the interface the request is received, src should be added to differentiate
the traffic between the two flows.

2. SYNPROXY does not inherit MARKs from the original request packets.
It should and it would make matching a lot easier, but it does not. This
means that for all packets generated by SYNPROXY, inface is lost.

3. FireHOL internally uses a MARK to tag packets send from SYNPROXY
to the target server. This is used for 3 reasons:

• isolate these packets from other destination NAT rules. If they were
not isolated from the destination NAT rules, then packets from the
SYNPROXY could be matched by a transparent proxy and enter your
web proxy. They could be matched by a transparent proxy because
they actually originate from the local machine.

• isolate the same packets from the rest of the packet filtering rules.
Without this isolation, most probably the packets will have been
dropped since they come from lo.

• report if orphan synproxy packets are encountered. So packets the
FireHOL engine failed to match properly, should appear with a
iptables log saying “ORPHAN SYNPROXY->SERVER”. If you don’t
have such logs, everything works as expected.

184

6.28.9 OTHER OPTIONS

You can change the TCP options used by synproxy by setting the variable
FIREHOL_SYNPROXY_OPTIONS. The default is this:

FIREHOL_SYNPROXY_OPTIONS="--sack-perm --timestamp --wscale 7 --mss 1460"

If you want to see it in action in the iptables log, then enable logging:

FIREHOL_SYNPROXY_LOG=1

The default is disabled (0). If you enable it, every step of the 3-way setup between
the client and SYNPROXY and the SYN packet of SYNPROXY towards the
real server will be logged by iptables.

Using the variable FIREHOL_CONNTRACK_LOOSE_MATCHING you can set
net.netfilter.nf_conntrack_tcp_loose. FireHOL will automatically set
this to 0 when a synproxy is set up.

Using the variable FIREHOL_TCP_TIMESTAMPS you can set net.ipv4.tcp_timestamps.
FireHOL will automatically set this to 1 when a synproxy is set up.

Using the variable FIREHOL_TCP_SYN_COOKIES you can set net.ipv4.tcp_syncookies.
FireHOL will automatically set this to 1 when a synproxy is set up.

On a busy server, you are advised to increase the maximum connection tracker
entries and its hash table size.

• Using the variable FIREHOL_CONNTRACK_HASHSIZE you can set
/sys/module/nf_conntrack/parameters/hashsize.

• Using the variable FIREHOL_CONNTRACK_MAX you can set net.netfilter.nf_conntrack_max.

FireHOL will not alter these variables by itself.

6.28.10 SYNPROXY AND DYNAMIC IP

By default the synproxy helper requires from you to define a dst IP of the
server that is to be protected. This is required because the destination IP will
be used to match the SYN packet the synproxy sends to the server.

There is however another way that allows the use of synproxy in environments
where the IP of the server is unknown (like a dynamic IP DSL):

185

1. First you need to set FIREHOL_SYNPROXY_EXCLUDE_OWNER=1. This will
make synproxy not match packets that are generated by the local machine,
even if the process that generates them uses your public IP (the packets in
order to be matched they will need not have a UID or GID).

2. Next you will need to exclude you lan IPs by adding src not
"${UNROUTABLE_IPS}" (or any other network you know you use) to the
synproxy statement.

6.28.11 EXAMPLES

Protect a web server running on the firewall with IP 1.2.3.4, from clients on
eth0:

ipv4 synproxy input inface eth0 dst 1.2.3.4 dport 80 accept

interface eth0 wan
server http accept

Protect a web server running on port 90 on the firewall with IP 1.2.3.4, from
clients on eth0 that believe the web server is running on port 80:

server_myhttp_ports="tcp/90"
client_myhttp_ports="default"

ipv4 synproxy input inface eth0 dst 1.2.3.4 dport 80 redirect to 90

interface eth0 wan
server myhttp accept # packet filtering works with the real ports

Protect a web server running on another machine (5.6.7.8), while the firewall is
the router (without NAT):

ipv4 synproxy forward inface eth0 dst 5.6.7.8 dport 80 accept

router wan2lan inface eth0 outface eth1
server http accept dst 5.6.7.8

Protect a web server running on another machine in a DMZ (public IP is 1.2.3.4
on eth0, web server IP is 10.1.1.1 on eth1):

186

ipv4 synproxy input inface eth0 \
dst 1.2.3.4 dport 80 dnat to 10.1.1.1

router wan2lan inface eth0 outface eth1
server http accept dst 10.1.1.1

Note that we used input not forward, because the firewall has the IP 1.2.3.4
on its eth0 interface. The client request is expected on input.

Protect an array of 10 web servers running on 10 other machines in a DMZ
(public IP is 1.2.3.4 on eth0, web servers IPs are 10.1.1.1 to 10.1.1.10 on eth1):

ipv4 synproxy input inface eth0 \
dst 1.2.3.4 dport 80 dnat to 10.1.1.1-10.1.1.10 persistent

router wan2lan inface eth0 outface eth1
server http accept dst 10.1.1.1-10.1.1.10

The above configuration is a load balancer. Requests towards 1.2.3.4 port 80
will be distributed to the 10 web servers with persistence (each client will always
see one of them).

Catch all traffic towards SSH port tcp/22 and send it to TRAP_AND_DROP as
explained in Working With Traps. At the same time, allow SSH on port
tcp/2200 (without altering the ssh server):

definition of action TRAP_AND_DROP
ipv4 action TRAP_AND_DROP sockets_suspects_trap 3600 86400 1 src not "${UNROUTABLE_IPS}" next action DROP

send ssh traffic to TRAP_AND_DROP
ipv4 synproxy input inface eth0 dst 1.2.3.4 dport 22 action TRAP_AND_DROP

accept ssh traffic on tcp/2200
ipv4 synproxy input inface eth0 dst 1.2.3.4 dport 2200 redirect to 22

interface eth0 wan
server ssh accept

6.28.12 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration

187

• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• firehol-params(5) - optional rule parameters
• firehol-masquerade(5) - masquerade helper
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation
• NAT HOWTO
• netfilter flow diagram

188

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO-6.html
http://upload.wikimedia.org/wikipedia/commons/3/37/Netfilter-packet-flow.svg

6.29 firehol-tcpmss(5)

6.29.1 NAME

firehol-tcpmss - set the MSS of TCP SYN packets for routers

6.29.2 SYNOPSIS

tcpmss { mss | auto } [if-list]

6.29.3 DESCRIPTION

The tcpmss helper command sets the MSS (Maximum Segment Size) of TCP
SYN packets routed through the firewall. This can be used to overcome situations
where Path MTU Discovery is not working and packet fragmentation is not
possible.

A numeric mss will set MSS of TCP connections to the value given. Using the
word auto will set the MSS to the MTU of the outgoing interface minus 40
(clamp-mss-to-pmtu).

If used within a router or interface definition the MSS will be applied to
outgoing traffic on the outface(s) of the router or interface.

If used before any router or interface definitions it will be applied to all traffic
passing through the firewall. If if-list is given, the MSS will be applied only to
those interfaces.

6.29.4 EXAMPLES

tcpmss auto

tcpmss 500

tcpmss 500 "eth1 eth2 eth3"

189

6.29.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-interface(5) - interface definition
• firehol-router(5) - router definition
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation
• TCPMSS target in the iptables tutorial

190

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/
https://www.frozentux.net/iptables-tutorial/iptables-tutorial.html#TCPMSSTARGET

6.30 firehol-tos(5)

6.30.1 NAME

firehol-tos - set the Type of Service (TOS) of packets

6.30.2 SYNOPSIS

tos value chain [rule-params]

6.30.3 DESCRIPTION

The tos helper command sets the Type of Service (TOS) field in packet headers.

Note
There is also a tos parameter which allows matching TOS values
within individual rules (see firehol-params(5)).

The value can be an integer number (decimal or hexadecimal) or one of the
descriptive values accepted by iptables(8) (run iptables -j TOS --help for a
list).

The chain will be used to find traffic to mark. It can be any of the iptables(8)
built in chains belonging to the mangle table. The chain names are: INPUT,
FORWARD, OUTPUT, PREROUTING and POSTROUTING. These names
are case-sensitive.

The rule-params define a set of rule parameters to match the traffic that is to be
marked within the chosen chain. See firehol-params(5) for more details.

Any tos commands will affect all traffic matched. They must be declared before
the first router or interface.

6.30.4 EXAMPLES

set TOS to 16, packets sent by the local machine

191

tos 16 OUTPUT

set TOS to 0x10 (16), packets routed by the local machine
tos 0x10 FORWARD

set TOS to Maximize-Throughput (8), packets routed by the local
machine, destined for port TCP/25 of 198.51.100.1
tos Maximize-Throughput FORWARD proto tcp dport 25 dst 198.51.100.1

6.30.5 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• firehol-params(5) - optional rule parameters
• firehol-tosfix(5) - tosfix config helper
• iptables(8) - administration tool for IPv4 firewalls
• ip6tables(8) - administration tool for IPv6 firewalls
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

192

http://ipset.netfilter.org/iptables.man.html
http://ipset.netfilter.org/ip6tables.man.html
http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.31 firehol-tosfix(5)

6.31.1 NAME

firehol-tosfix - apply suggested TOS values to packets

6.31.2 SYNOPSIS

tosfix

6.31.3 DESCRIPTION

The tosfix helper command sets the Type of Service (TOS) field in packet
headers based on the suggestions given by Erik Hensema in iptables and tc
shaping tricks.

The following TOS values are set:

• All TCP ACK packets with length less than 128 bytes are assigned
Minimize-Delay, while bigger ones are assigned Maximize-Throughput

• All packets with TOS Minimize-Delay, that are bigger than 512 bytes
are set to Maximize-Throughput, except for short bursts of 2 packets per
second

The tosfix command must be used before the first router or interface.

6.31.4 EXAMPLE

tosfix

6.31.5 SEE ALSO

• firehol(1) - FireHOL program

193

http://www.docum.org/docum.org/faq/cache/49.html
http://www.docum.org/docum.org/faq/cache/49.html

• firehol.conf(5) - FireHOL configuration
• firehol-tos(5) - tosfix config helper
• iptables(8) - administration tool for IPv4 firewalls
• ip6tables(8) - administration tool for IPv6 firewalls
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

194

http://ipset.netfilter.org/iptables.man.html
http://ipset.netfilter.org/ip6tables.man.html
http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

6.32 firehol-version(5)

6.32.1 NAME

firehol-version - set version number of configuration file

6.32.2 SYNOPSIS

version 6

6.32.3 DESCRIPTION

The version helper command states the configuration file version.

If the value passed is newer than the running version of FireHOL supports,
FireHOL will not run.

You do not have to specify a version number for a configuration file, but by doing
so you will prevent FireHOL trying to process a file which it cannot handle.

The value that FireHOL expects is increased every time that the configuration
file format changes.

Note
If you pass version 5 to FireHOL, it will disable IPv6 support and
warn you that you must update your configuration.

6.32.4 SEE ALSO

• firehol(1) - FireHOL program
• firehol.conf(5) - FireHOL configuration
• FireHOL Website
• FireHOL Online PDF Manual
• FireHOL Online Documentation

195

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/documentation/

	FireHOL Reference
	Who should read this manual
	Where to get help
	Installation
	Licence

	Setting up and running FireHOL
	Primary commands
	Sub-commands
	Helper commands
	Manual Pages in Alphabetical Order
	firehol(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	COMMANDS
	FILES
	SEE ALSO

	firehol.conf(5)
	NAME
	DESCRIPTION
	VARIABLES AVAILABLE
	ADDING SERVICES
	DEFINITIONS
	SUBCOMMANDS
	HELPER COMMANDS
	CONFIGURATION HELPER COMMANDS
	SEE ALSO

	firehol-action(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	firehol-actions(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	REJECT WITH MESSAGES
	SEE ALSO

	firehol-blacklist(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-classify(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-client(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-connmark(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-defaults.conf(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	VARIABLES
	SEE ALSO

	firehol-dscp(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-group(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-interface(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	SEE ALSO

	firehol-ipset(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FireHOL ipset extensions
	EXAMPLES
	SEE ALSO

	firehol-iptables(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	firehol-iptrap(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-mac(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-mark(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-masquerade(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	MASQUERADING AND SNAT
	EXAMPLES
	SEE ALSO

	firehol-modifiers(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	firehol-nat(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	BALANCING
	EXAMPLES
	SEE ALSO

	firehol-params(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	COMMON
	ROUTER ONLY
	INTERFACE ONLY
	LOGGING
	HELPERS ONLY PARAMETERS
	SEE ALSO

	firehol-policy(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	firehol-protection(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	PACKET PROTECTION TYPES
	FLOOD PROTECTION TYPES
	CLIENT LIMITING TYPES
	KNOWN ISSUES
	SEE ALSO

	firehol-proxy(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-router(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	WORKING WITH ROUTERS
	SEE ALSO

	firehol-server(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-services(5)
	NAME
	SYNOPSIS
	DESCRIPTION

	firehol-synproxy(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	BACKGROUND
	HOW IT WORKS
	USE CASES
	DESIGN
	LIMITATIONS
	OTHER OPTIONS
	SYNPROXY AND DYNAMIC IP
	EXAMPLES
	SEE ALSO

	firehol-tcpmss(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-tos(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	firehol-tosfix(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	firehol-version(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

